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Abstract

Computing plays an essential role in all aspects of high energy physics. As computational
technology evolves rapidly in new directions, and data throughput and volume continue to
follow a steep trend-line, it is important for the HEP community to develop an effective
response to a series of expected challenges. The computing challenges require adopting new
strategies in algorithms, software, and hardware at multiple levels in the HEP computational
pyramid. A significant issue is the human element – the need for training a scientific and
technical workforce that can make optimum use of state-of-the-art computational technolo-
gies and be ready to adapt as the landscape changes.

In order to help shape the desired response, the HEP Forum for Computational Excellence
(HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers – 1)
software effectiveness, and 2) infrastructure and expertise advancement. These drivers had
been identified in a number of previous studies, including the 2013 HEP Topical Panel on
Computing, the 2013 Snowmass Study, and the 2014 P5 report. The HEP-FCE formed three
working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems
(including systems software), to provide an overview of the current status of HEP computing
and to present findings and opportunities for the desired HEP computational roadmap. A
choice was made to focus on offline computing in HEP experiments, even though there can
be nontrivial connections between offline and online computing.

This document begins with a summary of the main conclusions and directions contained
in the three reports, as well as a statement of the cross-cutting themes that emerge from
them. Because the scope of HEP computing is so wide, it was impossible to give every
technical area its due in the necessarily finite space of the individual reports. By covering
some computational activities in more detail than others, the aim has been to convey the
key points that are independent of the individual research projects or science directions. The
three main reports follow in order after the summary.

The Applications Software Working Group undertook a survey of members of the HEP
community to ensure a broad perspective in the report. Albeit not a complete sample of
the HEP community, the respondents covered a range of experiments and projects. Several
dozens of applications were discussed in the responses. This mass of information helped to
identify some of the current strengths and weaknesses of the HEP computing effort.

A number of conclusions have emerged from the reports. These include assessments of
the current software base, consolidation and management of software packages, sharing of
libraries and tools, reactions to hardware evolution (including storage and networks), and
possibilities of exploiting new computational resources. The important role of schools and
training programs in increasing awareness of modern software practices and computational
architectures was emphasized. A thread running across the reports relates to the difficulties
in establishing rewarding career paths for HEP computational scientists. Given the scale
of modern software development, it is important to recognize a significant community-level
software commitment as a technical undertaking that is on par with major detector R&D.

Conclusions from the reports have ramifications for how computational activities are car-
ried out across all of HEP. A subset of the conclusions have helped identify initial actionable
items for HEP-FCE activities, with the goal of producing tangible results in finite time to
benefit large fractions of the HEP community. These include applications of next-generation
architectures, use of HPC resources for HEP experiments, data-intensive computing (virtual-
ization and containers), and easy-to-use production-level wide area networking. A significant
fraction of this work involves collaboration with DOE ASCR facilities and staff.
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HEP-FCE Working Group Reports Summary

High energy physics relies critically on scientific computing, simulations, and advanced
data handling and analysis techniques for scientific success across its broad program. As a
result, major funding for computing is provided to all sectors of HEP via “vertical” paths
through each research or technology project. Traditionally, HEP computing innovations and
advances have been developed within individual experiments or projects within the confines
of the current vertically funded model. While such advances add tremendous value to the
host experiment or project, these contributions risk being lost to the rest of the HEP com-
munity, along with any potential transfers to technology, without a horizontal channel for
easing exchanges and fostering innovation. Additionally, as experimental data rates and
volumes increase rapidly in an era of constrained budgets, it is becoming increasingly ap-
parent that a more coherent response to these technological pressures is needed, establishing
the importance of adding a well-chosen “horizontal” component within the computing re-
sources accessible to the field. The P5 recommendation [1], echoes this reality: Strengthen
the global cooperation among laboratories and universities to address computing and scientific
software needs, and provide efficient training in next-generation hardware and data-science
software relevant to particle physics. Investigate models for the development and maintenance
of major software within and across research areas, including long-term data and software
preservation.

The High Energy Physics Forum for Computational Excellence (HEP-FCE) was estab-
lished in the spring of 2014. It is DOE HEP’s official response to the P5 recommendation [1]
to strengthen global cooperation among laboratories and universities and to address sig-
nificant scientific software and computing needs that have been identified in a number of
reports, including the Snowmass Community Summer Study in 2013 [2]. The concept of the
Forum was originally proposed in a report from the Topical Panel Meeting on Computing
and Simulations in High Energy Physics convened in December 2013 [3].

Among the first tasks undertaken by the HEP-FCE was to establish three working groups
to focus on the current and future HEP computational needs at the most fundamental level,
with the aim of writing a report detailing the current state of HEP computing and including
key observations for identifying opportunities that need to be exploited in the future. These
three working groups were

• Applications Software (leads – Tom LeCompte and Zach Marshall)

• Software Libraries and Tools (leads – Anders Borgland and Brett Viren)

• Systems (hardware and systems software; lead – Peter Nugent)

The scale of computing and data-intensive activities within HEP is vast and covers efforts
that include thousands of researchers at hundreds of institutions worldwide, to collaborations
of hundreds of scientists, and finally, small groups and individual investigators. Computa-
tional activities are similarly wide-ranging, from science with datasets in the 100 Pbyte range
and numerical computations on the largest petascale systems available, to software devel-
opment and analysis on laptops. For these reasons, the technical groups must necessarily
address a large number of sub-topics.

The technical groups have interacted with the research community across all of HEP and
built on previous reports, the Snowmass White Papers, and the work of the DOE HEP
Topical Panel on Computing. While the combined report identifies needs and opportunities
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for the field as a whole, a subset of these are directly relevant in their impact on the initial
set of HEP-FCE activities.

The Applications Software Working Group was charged with surveying and evaluating
community software packages, large scale numerical simulation codes, software being devel-
oped for next-generation architectures, including HPC ports of experiment-specific codes,
and software management and distribution. The Working Group considered a number of
packages and toolkits that are in general use such as Geant4 [4] for modeling the interac-
tions of particles with matter, the data analysis framework ROOT [5], a wide variety of
event generators (general ones such as Pythia [6] and Sherpa [7], and more specialized, such
as CORSIKA [8] for simulating cosmic rays). It was noted that a wide variety of accelera-
tor modeling codes exist (over 70) and are used in different contexts. The evolution of the
lattice QCD software environment was also discussed. Given the diversity of the software
base, it was nevertheless felt that there were few obvious candidates for a top-down driven
consolidation – for the most part new programs were written to cover perceived inadequa-
cies of older programs, so many programs contain some unique functionality. Bottom-up
consolidation where possible would be desirable, particularly collaboration between existing
groups to merge developments.

As part of the work of the Applications Software Working Group, a survey was taken of
members of the HEP community to ensure a broad perspective in the report. The respon-
dents covered a range of experiments and projects, though not all areas of the community
were represented. Several dozen applications were discussed in the responses. The response
helped to clarify what was working well – it was felt in all cases that developers of the com-
munity software that was in use were responsive and helpful – and what was not, e.g., proper
prioritization of software development when a small number of developers must interact with
a large community.

Because of the complex nature of many HEP computational activities, there is widespread
use of software libraries and tools. The Libraries and Tools Working Group considered a num-
ber of topics ranging from code management utilities, build/release/scripting/testing tools,
general purpose libraries, graphics packages, data management and transfer tools, workflow
and workflow management, and documentation tools. The Working Group provided detailed
information on a number of selected areas (while identifying desirable properties) such as
event processing software frameworks, software development tools, and data management
tools. The Working Group concluded that sharing libraries and tools across experiments
would likely improve productivity. The problem of the tendency to employ “local” solutions
that actively impede code resuse, maintenance, and flexibility was identified as a major issue.
Several other difficulties to be overcome were discussed. These included lack of expertise,
short-term commitments to projects, parochial viewpoints, lack of openness, and errors in
setting the initial design directions. A set of best practices for experiments were identified
and discussed.

Finally, given the scale of modern software development, it was considered beneficial to
recognize a significant community-level software commitment as a technical undertaking at
times on par with major detector R&D. It was felt that recognizing people undertaking major
software developments would be extremely beneficial both to the software projects and to
the individual researchers, as recognition through grant awards and similar processes is one
metric by which young scientists are judged. The important role of schools and training
programs in increasing awareness of modern software practices was emphasized.

The Systems Working Group report considered the impact of changing technologies on
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HEP computational practice. The topics covered include processor technology, data access
bottlenecks, virtualization, resource provisioning, HEP applications and networking, opti-
mization of global data access, systems data analytics, and user authentication.

After considering the large number of challenges and opportunities, the Systems group
identified two major issues for HEP computing; not surprisingly these are 1) data storage and
data access technologies, and 2) efficient execution on future computer architectures. Issues
of data access and data storage are strongly intertwined. In the absence of sufficiently fast
networking one must increase the number of data/compute hubs to maintain throughput.
This increases the storage that must be bought and the fine-grained nature of the computing
reduces the overall efficiency. Conversely, improvements in network performance reduce the
overall storage cache requirement and allow for a smaller number of more powerful computing
hubs, with an increase in efficiency. As the data volume and the rate of data acquisition
increases, there is a corresponding increase of demand for computational resources. Due to
the constraints imposed by power requirements, and the end of Dennard scaling [9], computer
architectures are evolving in different directions [10], none of which are well-aligned with the
current HEP software base, which easily exceeds tens of millions of lines of code. Therefore,
there is an urgent need to develop new ideas and solutions that can transition this software
into a future state that is consistent with the hardware evolution roadmap, a task that
falls within the purview of the software-related working groups. The future computing
environment is expected to be significantly dynamic – at the level of the computational
resources, as well as from the point of view of resource provisioning and resource utilization
– and will place concomitant demands on networking. The resulting opportunities and
challenges were considered in the report.

The HEP-FCE Working Group reports considered the situation across all of HEP and
their conclusions apply to the field as a whole, including modes of software development, best
practices for HEP experiments, hardware issues, and other, large-scale issues. Based on the
findings and conclusions in the three reports, a number of (limited-scope) initial HEP-FCE
activites have been identified. These include work in:

• Next-generation architectures and HPC/supercomputer applications for HEP experi-
ments

• Data-intensive/cloud computing (virtualization/containers)

• Cross-cut software development

• High-speed networking (large-scale data transfers in production mode)

• ASCR/HEP interactions and workshops

• HEP-FCE infrastructure support and community development
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1 Applications Software Report: Introduction

The Applications Software Working Group was charged with surveying and evaluating
community software packages, large scale numerical simulation codes, software being devel-
oped for next-generation architectures, including HPC ports of experiment-specific codes,
and software management and distribution. This charge was in part a response to the P5
panel’s recommendation 29 [1], to “strengthen the global cooperation among laboratories
and universities to address computing and scientific software needs, and provide efficient
training in next-generation hardware and data-science software relevant to particle physics.
Investigate models for the development and maintenance of major software within and across
research areas, including long-term data and software preservation.”

This document first lays out a number of the packages in common use. In general, we do
not find any obvious place or need for a software down-select; the community has done well
even without deliberate or conscious organization to manage its resources. The results of a
survey of the community are discussed, and several suggestions are made towards improving
training of young scientists in software development and helping to ensure that reasonable
career paths are available to physicists who are computing-minded.

2 Packages in Common Use

There are a number of programs, packages and toolkits in broad use. These are under
active development, and in most cases there are multiple possible directions for development.
A partial list follows.

2.1 Experiment and Phenomenology
Geant4 is a toolkit for modeling the interaction of particles with matter. It is used in vary-
ing degrees by virtually all experiments. It is exceptionally flexible, and most experiments
assign physicists to adapting this flexibility to their specific cases. For example, for Su-
perCDMS [11] two Geant4 developers are also members of the collaboration. The Geant4
toolkit includes most features necessary for SuperCDMS backgrounds simulations, with the
exception of simulating the phonons and solid-state charge carriers which constitute their
signal. However, the toolkit is sufficiently general that, with the assistance of Geant4 de-
velopers, they have been able to incorporate those features themselves. Development efforts
range from multithreading, use of coprocessors, vectorization, and general performance im-
provements, to improved physics modeling. The extension of the physics models to the high
energies required by the 14 TeV LHC and the future colliders, as well as to low energies
for low-background experiments and other applications, are also ongoing. Other special-
ized codes, including FLUKA [12], MCNPX [13], and SHIELD-HIT [14] tend to be used for
low-energy applications or background modeling for low-background experiments.

ROOT is a data analysis framework used for individual analyses, but built on a set
of libraries that are used more generally within the experiments (along with new aspects
like PROOF and XRootD [15], and derivative works like RooFit, RooStats, PyROOT and
ROOTPy). It has recently had a major release, ROOT6, that replaces the previous C++
interpreter Cint with Cling. The experiments are assessing this update and evaluating the
best time to make the change.

A wide variety of event generators exist, ranging from the general (Pythia, Sherpa) to
very specialized (CORSIKA, which simulates cosmic rays). Periodically there is talk of
consolidation, but the same conclusions are drawn: the specialized ones are unique, and the
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general ones take very different approaches. This difference makes them both valuable in
understanding the effect of these different approaches and also difficult to merge. There
has been a slow move towards automatic frameworks for higher-order event generation (e.g.
Sherpa 2 and aMC@NLO) in order to replace some of the specialized generators that provided
state-of-the-art accuracy when they were written. This trend will naturally continue, with
new generators coming in at high accuracy (e.g., Top++ at NNLO) and specialized lower-
order generators falling out of use as automatic codes surpass them in speed, configurability,
and ease of use.

For phenomenologists, very fast, publicly available simulation software like the Pretty
Good Simulation (PGS) [16] and Delphes [17] are indispensable for testing new models of
physics beyond the standard model by recreating cut flows from experimental searches, just
as frameworks like Rivet [18] and Professor [19] are very helpful for testing new models against
measurements and for the tuning of event generators. These programs are often privately
patched to improve the accuracy of some difficult-to-model effects like b-quark tagging. It
would be helpful for the theory community in general if these private patches were made
publicly available. Some sort of community development would have to be undertaken in
order to make this possible, as happened to some degree during the Snowmass exercises
recently. These developments would serve as an excellent test case for how to centrally
improve these programs by incorporating user modifications.

art is a framework for new and (by the scale of collider experiments) small experiments
at the Intensity Frontier. This is presently a Fermilab product and used for Fermilab ex-
periments, but it has the potential to grow in scope. (As a historical footnote, ATLAS and
LHCb initially used the same framework, although they diverged over time to meet each of
the experiments’ needs.) It is discussed in the context of the Tools and Libraries groups.

2.2 Accelerator Physics
Many computer simulation codes have been developed (over 70 worldwide) for the modeling
of particle accelerators and beam transport. There has been little coordination of the devel-
opment of the accelerator physics codes whose aggregate involves a mix of complementarity
and duplication, and they are not all actively developed and maintained.

Many of the codes have been developed by a single developer (often a physicist) for a
specialized purpose or accelerator. Several multi-physics frameworks were developed by small
teams, some in large part with the support of DOE’s Scientific Discovery through Advanced
Computing (SciDAC) program [20], and are capable of incorporating many physics models.
A substantial fraction of the codes is serial, but a number of the codes have been ported to
parallel computers and some are capable of handling massive parallelism. A small fraction
of the codes were ported to GPUs. Many of the codes are written in FORTRAN, C or C++,
with a growing number combining the compiled language modules (for number crunching)
with a Python scripting interface.

A list of major U.S. accelerator codes, frameworks and toolkits (may not be exhaustive,
and commercial codes are mostly not included):

• ACE3P (SLAC): Omega3P, Pic3P, S3P, T3P, Track3P, TEMP3P

• BLAST (LBNL): BeamBeam3D, Impact, MaryLie/IMPACT (also U. Md, Tech-X),
Posinst, Warp (also LLNL/U. Maryland)

• LAACG (LANL): Parmela, Parmila, Poisson/Superfish, Parmteq, Trace
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• BMAD (Cornell U.)

• MARS, Synergia (FNAL)

• COSY (MSU)

• G4Beamline (Muons Inc.)

• Elegant, Track (Argonne)

• Orbit/PyOrbit (ORNL)

• Osiris, QuickPIC (UCLA)

Until now, the development of accelerator codes has been left to projects without the
mandate and programmatic funding for coordination, distribution and user support. While
this is adequate for the development of relatively small-scale codes on targeted applications,
a more coordinated approach is needed to 1) enable well supported multi-physics codes with
user bases that extend beyond individual projects, 2) leverage crosscutting activities (e.g.,
porting codes to many-core or GPU architectures). It is however desirable to capitalize on
the existing pool of codes, which represent a significant investment from the community, and
to avoid disruption to the users and developers by adopting an incremental (near adiabatic)
approach for transitioning from the existing collection of codes to a modular ecosystem of
interoperable components that facilitate cooperation and reuse. It is also important that
innovations in algorithms, which is a strength of this community, is not hindered by the
transition. Such an approach is being initiated by the new Consortium of Advanced Modeling
of Particle Accelerators (CAMPA [21]).

2.3 Lattice QCD
There is a long standing software effort within the US lattice field theory community funded
through the SciDAC program, and there are a number of community codes that are freely
available. Traditionally, the emphasis has been on QCD, i.e., SU(3) gauge theory with vari-
ous formulations for the quarks. More recently, there has been significant work on theories
other than QCD, which may be relevant for beyond the standard model physics, includ-
ing supersymmetric theories. High performance has always been a necessity and a point
of pride for this community. For many years there was a fairly stable programming envi-
ronment with message passing between nodes and single core performance optimized via
libraries. The programming environment has become increasingly challenging as we deal
with new architectures such as GPUs and many-core chips. These require two or three levels
of parallelism and very careful consideration of the data layout.

The USQCD Collaboration, which is responsible for the SciDAC software effort, has
developed three levels of libraries to support the application codes [22].

Level 1 consists of a basic linear algebra library, QLA, a message passing library, QMP, and
a multi-threading library, QMT. At level 2 are the C and C++ libraries, QDP and QDP++,
which contain data parallel operations that combine linear algebra operations with shifts of
data between grid points; the LIME library, C-LIME, specialized for QCD; and Bagel QDP,
which uses Peter Boyle’s Bagel package for optimized linear algebra. Level 3 contains highly
optimized packages for solvers of various types that have a standard interface so they can be
called by the various community application codes. Among the libraries is one designed for
NVIDIA GPUs called QUDA.
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The original application libraries for QCD are Chroma (Jefferson Lab), CPS (Columbia,
BNL, UKQCD), and MILC (MILC Collaboration). Recently, the high level libraries FUEL
(Argonne) and QLUA (MIT) have been developed to enable applications with a wider va-
riety of gauge groups and fermion representations. Continuing development will be needed
to exploit current and future hardware. It is crucial not to lose expertise in GPU comput-
ing and to continue to develop expertise in many-core computing. Furthermore, algorithm
development cannot be neglected as it has the potential to yield much greater benefits than
code optimization.
2.4 Computational Cosmology
Cosmological simulations can be classified into two types: 1) gravity-only N-body simula-
tions, and 2) hydrodynamic simulations that also incorporate gasdynamics, sub-grid mod-
eling, and feedback effects. Because gravity dominates on large scales, and dark matter
outweighs baryons by roughly a factor of five, N-body simulations provide the bedrock on
which all other techniques rest. Parallel numerical implementations can be purely particle-
based or particle/grid hybrids. Several post-processing strategies exist to incorporate addi-
tional physics on top of the basic N-body simulation. The key shortcoming is that much
of the physics of the baryonic sector cannot be treated directly. Whenever the dynamics of
baryons is important, gasdynamic, thermal, and radiative processes – among others – must
be incorporated along with sub-grid modeling of processes such as star formation and local
feedback mechanisms. Such simulations are substantially more complex and difficult to carry
out, and at present they are limited to volumes significantly smaller than full survey vol-
umes. ‘Gastrophysics’ is added to N-body simulations via either grid-based adaptive mesh
refinement (AMR) solvers or via particle-based methods such as smoothed-particle hydrody-
namics (SPH). With partial support from the SciDAC program, three large-scale cosmology
codes are being used – the extreme-scale N-body code HACC [23] and the state of the art
cosmological hydrodynamics codes, ART and Nyx [24].

HACC is targeted at exploiting next-generation architectures and can run on CPU,
CPU/GPU, and many-core systems. ART and Nyx will need refactoring to run on many-core
systems (there is currently no plan to use GPUs). As in the case of lattice QCD, develop-
ing and maintaining computational and algorithmic expertise in this area is an essential
requirement.
2.5 Summary of Available Software and Applications
As shown, the number of programs is rather large. There is no obvious candidate for a
top-down driven consolidation: new programs were written to cover perceived inadequacies
of older programs, so many or all programs contain some unique functionality. We encourage
bottom-up consolidation where possible, particularly collaboration between existing groups
to merge developments. Ensuring that some conferences like CHEP provide an opportunity
for the announcement and discussion of new software package for HEP applications is critical
both for experiments to have a good view of the available options and for developers to gain
recognition for their work.

Over the last several years, quite a few “wrapper” packages (e.g., rootpy [25]) or HistFit-
ter [26]) have been developed around some of the larger software applications that are in wide
use (in these cases, ROOT/PyROOT and RooFit/RooStats). It would be very useful for
the larger collaborations supporting these software applications to carefully examine these
wrapper packages to see what functionality could be integrated back into the main package,
and what led people to develop the wrappers in the first place. In some cases the differences
may simply be a matter of taste; in other cases it could be that the developments are useful
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to a much wider community, and simply because they are maintained separately the wrapper
packages are generally not as well known.

3 Survey Outcomes

A survey was taken of members of the HEP community to ensure a broad perspective in
this report. The respondents covered a range of experiments and projects, though not all
areas of the community were represented. Several dozen applications were discussed in the
responses.

The following questions were asked in the community survey:

• What software packages does your collaboration use that were not internally developed,
or that were internally developed but are now used extensively beyond the collabora-
tion?

• Are the packages you listed still actively maintained?

• Are the software package developers responsive?

• Are new developments, beyond just bugfixes, going into these software packages?

• Do you find that the software in the package has sufficient functionality for your use
case? Furthermore, if there are new developments, do you anticipate these meeting
your needs over the next few years?

• Do you find that the software package has significant performance penalties that you
need to work around, or which are causing bottlenecks in your own code performance?

In every case, it was reported that the developers of the community software that was in
use were responsive and helpful. Some packages do not appear to be actively maintained,
but in those cases the functionality has been taken up by another project, so these efforts
do not need to be restarted. Development is steady in the major packages, but major
development may be disruptional – as one responder put it, “We’re so used to it that big
changes might be counterproductive.” Another pointed out that “to get the physics updates
to a package, we often have to accept breaking interface changes, etc.” Development is still
“driven by collaboration needs,” according to another respondent, but this may be a part
of the problem: when a small number of developers are fielding requests from a large user-
base, it can be difficult to weigh the importance of one group of requests against another
without more regular and public interactions. As one respondent put it, the development
happens best “when we know what to ask.” With regards to a number of these concerns, the
Geant4 collaboration has an excellent model: requirements, requests, and bug reports are
tracked in a public manner, and there are regular (several times per year) meetings at which
users are able to raise concerns and at which developers report new features to inform the
larger community. This also serves to guide the development process, as users have a clear
opportunity to respond early to major developments (whether positively or negatively) and
to learn what issues others have seen and overcome.

A few opportunities for common software projects were identified. One of these is a
common geometry project. At the moment, ROOT, Geant4, DD4HEP, USolids, and GDML
all provide very similar functionality in terms of geometry description, and other experiments
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(e.g. ATLAS’s GeoModel) or software packages (e.g. FLUKA) provide yet another geometry
description style and language. These different codes have various performance features, and
in some cases several have been integrated inside of a single package (e.g., Geant4 is able
to run with several different geometry engines). It would be beneficial to see how much of
these different packages could be integrated within a smaller number of efforts.

In most cases, survey respondents reported that software or library performance was
adequate for their needs, or that they were able to work around any major performance
bottlenecks. In all cases where the software had performance problems, the alternative
solutions on the market did not provide adequate functionality or had their own set of
disadvantages. Several codes and groups were complimented for their consistent performance
improvements and for their use of modern hardware architectures.

4 Training of Future Computing and Software Experts

In recent years, some software projects have become just as complex, and come to re-
quire comparable person-hours and resources, as major hardware research and development
projects. As yet, however, the community has not fully recognized the analogous need with
analogous funding opportunities or future job prospects. Traditional academic environments
have recognized the importance of technical hardware work in combination with strong
physics programs. Given the scale of modern software development, it would be beneficial
to recognize a significant community-level software commitment as a technical undertaking
at times on par with major detector R&D. Of course, there are some differences between the
two, in terms of the physical nature of hardware (e.g., it is easier to show a machine that
has been purchased or a new chip that has been developed) and the casual nature of some
software (e.g. physics analysis code is not the appropriate level of effort). But we believe
that recognizing people undertaking major software developments will be hugely beneficial
both to the software projects and to the researchers involved, as recognition through grant
awards and similar processes is one metric by which young scientists are judged. Such op-
portunities, provided through the HEP-FCE or by the DOE Office Of Science directly, would
help improve appreciation for expertise that is often unrecognized in traditional academic
environments. The HEP-FCE has already put forward the notion of advertising the work of
early-career people in the field on the web, which is an excellent start.

In a similar vein, summer schools and other programs for the training of graduate students
and young scientists have traditionally included some hardware training aspect. If a software
expert’s long-term job prospects are comparable to scientists with an equivalent hardware
expertise, then the community will benefit greatly from additional training in software issues.

These schools and training programs should be augmented to ensure that, just as students
rarely reach graduation without some exposure to hardware techniques and issues, students
in the field are afforded comparable training in modern software development techniques,
including programming on new advanced hardware platforms. The HEP-FCE is an obvious
contact point for finding experts to get involved in the development of such programs. These
should be augmented by special workshops and training sessions, organized in part by the
HEP-FCE, for the training of future experts. Here OpenLab [27] is an example of an orga-
nization with significant commitment to hosting training and tutorials in important modern
software topics. Topics for such sessions could include:

• Co-processor and GPU use, and the porting of widely-used software packages
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• Low-level performance profiling and common beneficial design patterns

• Novel pattern-recognition algorithms

5 Summary of Opportunities

We do not find significant opportunities for software package down-selects at this moment
in time. The software and applications in use in the HEP community have been evolving
and will continue to as new possibilities are opened by new technologies and advances in
theoretical understanding. There are several large software packages in wide use, including
ROOT and Geant4. These have generally done well responding to developers needs, but
more coordination and response might be constructive in some cases.

There are significant opportunities for better training and advancement for scientists
within the software development community. Modern software development should be rec-
ognized as having comparable complexity to many hardware R&D projects, and the agen-
cies could help to ensure this recognition. Improving student training in good programming
practices on modern platforms would also help the field in general, and there are several
opportunities in this area.
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1 Software Libraries and Tools Report: Introduction

This report summarizes the deliberations of the HEP-FCE Software Libraries and Tools
Working Group. The charge to the Working Group includes topics such as:

• Code management utilities

• Build/release/scripting/testing tools

• Documentation tools

• Graphics packages

• General purpose libraries (I/O, statistical analysis, linear algebra)

• Data management and transfer tools

• Workflow and Workload management

The focus of the this Working Group report is on software libraries and tools, however,
the breadth and depth of work relevant to HEP in this area is far too extensive to provide
complete coverage in this document. Instead of attempting to be comprehensive, the Working
Group has considered only a sampling, hopefully representative, of the possible projects and
areas. Omissions are not intended to be interpreted as positive or negative reflections on those
projects or areas. In the following sections we give a prioritized list of technical activities
with suggested scoping and deliverables that can be expected to provide cross-experiment
benefits. The remaining bulk of the report gives a technical survey of some specific “areas of
opportunity” for cross-experiment benefit in the realm of software libraries and tools. This
survey serves as support for the prioritized list. For each area we describe the ways that
cross-experiment benefit is achieved today, as well as describe known failings or pitfalls where
such benefit has failed to be achieved and which should be avoided in the future. For both
cases, we try to give concrete examples. Each description then ends with an examination of
what opportunities exist for improvements in that particular area.

2 Prioritized Efforts

2.1 Cross-Experiment Effort

1. Various detailed “opportunities” listed in the following survey sections call out the need
for further work to be carried out in some detail by technical working groups. These
are needed to better understand the nature of a specific problem shared across many
experiments, formulate requirements for – and in some cases – design and implement
solutions. Such working groups should be organized using suitable expertise from the
HEP software community.

2. Packages or frameworks (or significant subsets) which have proven popular (used by
more than one experiment) and useful should be considered for cross-experiment sup-
port, especially in terms of providing support for easy adoptability (setup and install
by other experiments, on other O/S platforms) and documentation (detailed guides
and non-experiment-specific manuals).
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2.2 Effort by Experiments
Throughout the following survey sections, a number of best practices and pitfalls relevant
to the development and use of software libraries and tools by individual experiments were
identified. First, some generalities were identified:

1. New experiments should not underestimate the importance of software to their success.
It should be treated as a major subsystem at least on par with other important aspects
such as detector design, DAQ/electronics, civil construction, etc.

2. Experiments should understand the pitfalls listed in Section 3.1. New experiments
should plan and implement mechanisms to avoid them and existing experiments should
reflect on which ones may apply and develop ways to address them. Likewise, the best
practices listed in Section 3.2) should be considered. New experiments should attempt
to follow them and if practical and beneficial, existing experiments should seek to make
the changes needed to implement them.

The remaining Sections below contain surveys of select areas of software libraries and
tools in HEP. For each we list a summary of aspects that make for success in the associated
area.

• Aspects of successful Event Processing Software Frameworks include: those with flex-
ible (possibly hierarchical) notions of “events”, those that are easily adoptable by new
experiments, are well-documented, have dynamically configurable (possibly scriptable)
configuration parameter sets and are modular and efficient (e.g., allow C++ like mod-
ules for low-level operations combined with a scripting layer like Python for flexible
higher level control).

• Aspects of successful Software Development tools include: those that follow licence-free
availablity and free-software distribution models, those that include code repositories,
build systems that work on a variety of platforms with a small number of clearly de-
fined base element dependencies (i.e., C compiler, compression library, specific version
of Python) and those with release configuration systems with versioning that under-
stand a variety of platforms; those that support automatic continuous integration and
regression testing; those that have open documentation updating and bug-reporting
and tracking.

• Aspects of successful Data Management tools include: those that are inherently mod-
ular and avoid tight couplings to either specific technologies or to other parts of the
computing ecosystem, in particular to the Workload Management System and the
Metadata Catalogs; those that, while being complex and originallly developed for
large scale operations, at for example the LHC, may be simplified and downscaled for
use by smaller experiments with minimal manpower and technical expertise.

• Aspects of successful Workflow and Workload Management tools include: those that
understand the distinction between and support flexible, efficient interaction between
workflow, workload, and data management aspects of a system; those that make ef-
ficient use of resources (CPU, RAM-memory, disk, network, tape) for processing in
parallel; those that allow granular, multi-level monitoring of status; those that handle
error cases effectively and inclusively; those that are properly scaled to the size of the
experiment.
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• Aspects of successful Geometry Information Management tools include: those that
follow or set widely used standards for representation of geometric information; those
that follow standards for visualization.

• Aspects of successful Conditions Database tools include: those that allow standardized,
experiment-wide access to representative or specific event conditions so that realistic
simulations or statistics can be generated by users without detailed knowledge of de-
tectors or specific event.

3 Survey of Current Landscape

This Section presents a general overview of the current landscape of HEP libraries and
tools. First we list general patterns that run counter to cross-experiment sharing. Secondly,
we give a prioritized list of beneficial activities.

3.1 Forces Counter to Cross-Experiment Software
Sharing software libraries and tools between experiment more frequently than is currently
done is expected, by the group, to increase overall productivity. Independent of cross-
experiment sharing, designing and implementing software in a more general manner is ex-
pected to be beneficial. The Working Group identified some reasons why such general use
software is not as predominant as it could be.

3.1.1 Up-front Effort
Designing and implementing software to solve a general problem instead of the specific
instance faced by one experiment can take more effort initially. Solving “just” the problem
one immediately faces is cheaper in the immediate time scale. If the problem is short-lived
and the software abandoned, this strategy can be a net benefit. What is more often the case,
fixes to new problems compound the problem and the software becomes either brittle and
narrowly focused, increasingly diffcult to maintain, and ever less able to be extended.

3.1.2 Lack of Expertise
Physicists have always been multidisciplinary, covering all aspects of an experiment from
hardware design, bolt turning, operations, project management, data analysis and software
development. As data rates have increased, algorithms have become more complex, and
networking, storage and computation technology more advanced, the requirements for a
physicist to be a software developer have become more challenging to meet, while maintaining
needed capabilities in the other disciplines. As a consequence, some experiments – especially
smaller ones – lack the software expertise and knowledge of what is available needed to
develop general software solutions, or adopt existing ones. This leads to the same result of
solving “just” the immediate problem and associated consequences described above.

3.1.3 Ignoring Software Design Patterns
A specific example of lack of expertise manifests in developers who ignore basic, tried and
true, software design patterns. This can be seen in software that lacks any notion of interfaces
or layering between different functionality. Often new features are developed by finding a
spot that “looks good” and pasting in some more code to achieve an immediate goal with no
understanding of the long-term consequences. Like the “up-front” costs problem, this strategy
is often rewarded as the individual produces desired results quickly and the problem that
this change causes does not become apparent until later.
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3.1.4 Limited Support
Some experiments have a high degree of software expertise. These efforts may even naturally
produce software that can have some cross-experiment benefit. However, they lack the
necessary ability to support their developers to make the final push needed to offer that
software more broadly. In many cases they also do not have the ability to assure continued
support of the software for its use by others. In the best cases, some are able to provide
support on a limited or best effort basis. While this helps others adopt the software, it still
leaves room for improvements. A modest amount of expert time can save a large amount of
time of many novices.

3.1.5 Transitory Members
Many software developers in an experiment are transitory. After graduate students and post-
docs make a contribution to the software development and the experiment in general they
typically move on to other experiments in the advancement of their careers. In part, this
migration can help disseminate software between experiments but it also poses the problem of
retaining a nucleus of long-term knowledge and support around the software they developed.

3.1.6 Parochial View
In some cases, beneficial software sharing is hampered by experiments, groups, labs, etc
which suffer from the infamous “not invented here” syndrome. A parochial view leads to
preferring solutions to come from within the unit rather than venturing out and surveying
a broader landscape where better, more general solutions are likely to be found. Parochial-
ism compounds itself by making it ever more difficult for motivated people to improve the
entrenched systems by bringing in more general solutions.

3.1.7 Discounting the Problem
There is a tendency for some physicists to discount software and computing solutions. The
origin of this viewpoint may be due to the individual having experience from a time where
software and computing solutions were indeed not as important as they are now. It may
also come as a consequence of that person enjoying the fruits of high quality software and
computing environments and being ignorant of the effort needed to provide and maintain
them. Whatever the origin, underestimating the importance of developing quality software
tools leads to inefficiency and lack of progress.

3.1.8 Turf Wars
Software development is a personal and social endeavor. It is natural for someone who takes
pride in that work to become personally attached to the software they develop. In some
cases this can cloud judgment and lead to retaining software in its current state while it may
be more beneficial to refactor or discard and reimplement. What are really prototypes can
become too loved to be replaced.

3.1.9 Perceived Audience and Development Context
The group made the observation that cues from the audience for the software and the context
in which it is developed lead to shifts in thinking about software design. For example, the
resulting designs tend to be more narrowly applicable when one knows that the code will be
committed to a private repository accessible only by a single collaboration. On the other
hand, when one is pushing commits to a repository that is fully accessible by a public audience
one naturally thinks about broader use cases and solutions to more general problems.

3.1.10 Disparate Communications
Different experiments and experiment-independent software projects have differing means
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of communicating. Technical support, knowledge bases, software repositories, bug trackers,
release announcements are all areas that have no standard implementation. Some groups
even have multiple types of any of these means of communication. Independent of this,
different policies mean that not all information may be publicly available. These all pose
hurdles for the sharing of software between groups.
3.1.11 Design vs. Promotion
For general purpose software to be beneficial across multiple experiments it needs at least
two things. It needs to be well designed and implemented in a way that is general purpose.
It also needs to be promoted in a way so that potential adopters learn of its suitability. Often
the set of individuals that excel at the former and excel at the latter have little overlap.
3.1.12 Decision Making
An experiment’s software is no better than the best software expert involved in the decision
making process used to provide it. And it’s often worse. Decision making is a human action
and as such it can suffer from being driven by the loudest argument and not necessarily the
one most sound. Many times, choices are made in a vacuum lacking suitable opposition. At
times they are made without a decision-making policy and procedures in place or ignored
if one exists, or if followed, without sufficient information to make an informed decision.
Politics and familiarity can trump rationality and quality.
3.1.13 Getting off on the Wrong Foot
There is often no initial review of what software is available when a new experiment begins.
Frequently a physicist charged with software duties on an experiment will jump in and begin
to do things the way that they were done in their last project, thus propagating and baking
in inefficiencies for another generation. No time will be spent to see what has changed since
an earlier experiment’s software design, and whole evolutions in ways of thinking or recently
available tools updates may be missed.
3.2 Best Practices for Experiments
3.2.1 Look Around
New experiments should survey and understand the current state of the art for software
libraries and tools (and Systems and Applications Software as covered by the other two
working groups). Periodically, established experiments should do likewise to understand
what improvements they may adopt from or contribute to the community. Experts from
other experiments should be brought in for in-depth consultation even in (especially in)
cases where the collaboration feels there is sufficient in-house expertise.
3.2.2 Early Development
There are certain decisions that if made early and implemented can save significant effort in
the future. Experiments should take these seriously and include them in the conceptual and
technical design reports that are typically required by funding agencies. These include the
following:
data model
Detailed design for data model schema covering the stages of data production and processing
including: the output of detector simulation (including “truth” quantities), the output of
“raw” data from detector DAQ and the data produced by and used as intermediaries in
reconstruction codes.
testing
Unit and integration testing methods, patterns and granularity. These should not depend
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on or otherwise tied to other large scale design decisions such as potential event processing
software frameworks.

namespaces
Design broad-enough namespace rules (unique filenames, event numbering conventions, in-
cluding re-processed event version tags) to encompass the entire development, operations and
legacy aspects of the experiment, which may span decades in time and have worldwide dis-
tributed data stores. Filenames, or, in larger experiments, the meta-system which supports
file access and movement, should have unique identifiers not just for given events or runs at
a single location, but even if a file is moved and mixed with similar files remotely located
(i.e., filename provenance should not rely upon directory path for uniqueness). One should
be able to distinguish development versions of files from production versions. If the same
dataset is processed multiple times, the filenames or other metadata or provenance indica-
tors should be available that uniquely track the processing version. The same goes for code:
software versions must be tracked clearly and comprehensively across the distributed exper-
iment environment (i.e., across multiple institutions, experiment phases and local instances
of repositories).

scale
Understand the scale of complexity of the software, its development/developers. Determine
if an event processing framework is needed or if a toolkit library approach is sufficient or
maybe if ad-hoc development strategies are enough.

metadata
Determine what file metadata will be needed across the entire efforts of the collaboration.
Include raw data and the requirements for its production as well as simulation and processed
data. Consider what file metadata will be needed to support large scale production simu-
lation and processing. Consider what may be needed to support ad-hoc file productions by
individuals or small groups in collaboration.

3.3 Areas of Opportunity
Each of the following sections focus on one particular area of opportunity to make improve-
ments in how the community shares libs/tools between experiments. In each area of oppor-
tunity we present:

• A description of the area.

• A number of case studies of existing or past software libraries and tools including
concrete examples of what works and what does not.

• Specific aspects that need improvement and an estimation of what efforts would be
needed to obtain that.

4 Event Processing Software Frameworks

4.1 Description
A software framework abstracts common functionality expected in some domain. It provides
some generic implementation of a full system in an abstract way that lets application-specific
functionality to be added through a modular implementation of framework interfaces.
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Toolkit libraries provide functionality addressing some domain in a form that requires
the user-programmer to develop their own applications. In contrast, frameworks provide
the overall flow control and main function requiring the user-programmer to add application
specific code in the form of modules.

In the context of HEP software, the terms “event” and “module” are often overloaded and
poorly defined. In the context of software frameworks, an “event” is a unit of data whose
scope is dependent on the “module” of code which is processing. In the context of a code
module that generates initial kinematics, an event is the information about the interaction.
In a module that simulates the passage of particles through a detector, an event may contain
all energy depositions in active volumes. In a detector electronics simulation, it may contain
all signals collected from these active volumes. In a trigger simulation module, it would be
all readouts of these signals above some threshold or other criteria. At this point, data from
real detectors gain symmetry with simulation. Going further, data reduction, calibration,
reconstruction and other analysis modules each have a unique concept of the “event” they
operate on. Depending on the nature of the physics, the detector, and the follow-on analysis,
every module may not preserve the multiplicity of data. For example, a single interaction
may produce multiple triggers, or none.

With that description, an event processing software framework is largely responsible for
marshalling data through a series (in general a directed and possibly cyclic graph) of such
code modules which then mutate the data. To support these modules the framework provides
access to external services such as data access, handle file I/O, access to descriptions of the
detectors, provide for visualization or statistical summaries, and databases of conditions for
applying calibrations. The implementation of these services may be left up to the experiment
or some may be generically applicable. How a framework marshalls and associates data
together as an event is largely varied across different HEP experiments and may be unique
for a given data collection methodology (beam gate, online trigger, raw timing, etc).

4.2 Gaudi
The Gaudi event processing framework [28, 29] provides a comprehensive set of features and
is extensible enough that it is suitable for a wide variety of experiments. It was conceived by
LHCb and adopted by ATLAS and these two experiments still drive its development. It has
been adopted by a diverse set of experiments including HARP, Fermi/GLAST, MINERνA,
Daya Bay and others. The experience of Daya Bay is illuminating for both Gaudi specifically
and for more general issues of this report.

First, the adoption of Gaudi by the Daya Bay collaboration was greatly helped by the
support from the LHCb and ATLAS Gaudi developers. Although not strictly their re-
sponsibility, they found the time to offer help and support to this and the other adopting
experiments. Without this, the success of the adoption would have been uncertain and at
best would have taken much more effort. Daya Bay recognized the need and importance of
such support and, partly selfishly, formed a mailing list [30] and solicited the involvement
of Gaudi developers from many of the experiments involved in its development and use. It
became a forum that more efficiently spread beneficial information from the main developers.
It also offloaded some support effort to the newly minted experts from the other experiments
so that they could help themselves.

There were, however areas that would improve the adoption of Gaudi. While described
specifically in terms of Gaudi they are general in nature. The primary one would be direct
guides on how to actually adopt it. This is something that must come from the community
and likely in conjunction with some future adoption. Documentation on Gaudi itself was
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also a problem particularly for Daya Bay developers where many of the basic underlying
framework concepts were new. Older Gaudi design documents and some experiment-specific
ones were available but they were not always accurate nor focused on just what was needed
for adoption. Over time, Daya Bay produced its own Daya Bay-specific documentation which
unfortunately perpetuates this problem.

Other aspects were beneficial to adoption. The Gaudi build system, based on CMT [31]
is cross platform, open and easy to port. It has layers of functionality (package build system,
release build system, support for experiment packages and “external” ones) but it does not
require a full all-or-nothing adoption. It supports a staged adoption approach that allowed
Daya Bay to get started using the framework more quickly.

The importance of having all Gaudi source code open and available cannot be diminished.
Also important was that the Gaudi developers included the growing community in the release
process.

While Gaudi’s CMT-based package and release build system ultimately proved very useful,
it hampered initial adoption as it was not commonly used widely outside of Gaudi and the
level of understanding required was high. It is understood that there is now a movement to
provide a CMake based build system. This may alleviate this particular hurdle for future
adopters as CMake is widely used both inside and outside HEP projects.

Finally, although Gaudi is full-featured and flexible it did not come with all needed
framework-level functionality and, in its core, does not provide some generally useful mod-
ules that do exist in experiment code repositories. In particular, Daya Bay adopted three
Gaudi extensions from LHCb’s code base. These are actually very general purpose but
due to historical reasons were not provided separately. These were GaudiObjDesc (data
model definition), GiGa (Geant4 interface) and DetDesc (detector description). Some ex-
tensions developed by other experiments were rejected and in-house implementations were
developed. In particular, the extension that provided for file I/O was considered too much
effort to adopt. The in-house implementation was simple, adequate but its performance was
somewhat lacking.

One aspect of the default Gaudi implementation that had to be modified for use by Daya
Bay was the event processing model. Unlike collider experiments, Daya Bay necessarily
had to deal with a non- sequential, non-linear event stream. Multiple detectors at multiple
sites produced data in time order but not synchronously. Simulation and processing did
not preserve the same “event” multiplicity. Multiple sources of events (many independent
backgrounds in addition to signal) must be properly mixed in time and at multiple stages
in the processing chain. Finally, delayed coincidence in time within one detector stream
and between those of different detectors had to be formed. The flexibility of Gaudi allowed
Daya Bay to extend its very event processing model to add the support necessary for these
features.

4.3 CMSSW and art
In 2005, the CMS Experiment developed their current software framework, CMSSW [32], as a
replacement to the previous ORCA framework. The framework was built around two guiding
principles: the modularity of software development and that exchange of information between
modules can only take place through data products. Since implementing the CMSSW, the
complexity of the CMS reconstruction software was greatly reduced compared with ORCA
and the modularity lowered the barrier to entry for beginning software developers. (The
Working Group thanks to Dr. Liz Sexton-Kennedy and Dr. Oli Gutsche for useful discussions
concerning the history and design of CMSSW.)

Page 18



HEP-FCE Working Group Reports

The CMS Software Framework is designed around four basic elements: the framework, the
event data model, software modules written by physicists, and the services needed by those
modules [33]. The framework is intended to be a lightweight executable (cmsRun) that loads
modules dynamically at run time. The configuration file for cmsRun defines the modules
that are part of the processing and thus the loading of shared object libraries containing
definitions of the modules. It also defines the configuration of modules parameters, the
order of modules, filters, the data to be processed, and the output of each path defined by
filters. The event data model (EDM) has several important properties: events are trigger
based, the EDM contains only C++ object containers for all raw data and reconstruction
objects, and it is directly browsable within ROOT. It should be noticed that the CMSSW
framework is not limited to trigger based events, but this is the current implementation for
the CMS experiment. Another important feature of the EDM over the ORCA data format
was the requirement that all information about an event is contained within a single file.
However, file parentage information is also kept so that if objects from an input file are
dropped (e.g., the raw data) that information can be recovered by reading both the parent
file and the current file in downstream processes. The framework was also constructed such
that the EDM would contain all of the provenance information for all reconstructed objects.
Therefore, it would be possible to regenerate and reproduce any processing output from the
raw data given the file produced from CMSSW. Another element of the framework that
is useful for reproducibility is the strict requirement that no module can maintain state
information about the processing, and all such information must be contained within the
base framework structures.

The art framework is an event processing framework that is an evolution of the CMSSW
framework. In 2010, the Fermilab Scientific Computing Division undertook the development
of an experiment-agnostic framework for use by smaller experiments that lacked the person-
power to develop a new framework. Working from the general CMSSW framework, most of
the design elements were maintained: lightweight framework based on modular development,
event data model, and services required for modules. The output file is ROOT browsable
and maintains the strict provenance requirements of CMSSW. For Intensity and Cosmic
Frontier experiments, the strict definition of an event being trigger based is not appropriate
and so this structuring was removed and each instance of art allows the experiment to define
the event period of interest as required. art is currently being used by the Muon g-2, µ2e,
NOνA, µBooNE, and LBNE/35T prototype experiments.

CMSSW did initially have some limitations when implemented, the most significant be-
ing the use of non-interpreted, run-time configuration files defined by the FHiCL language.
The significance of this being that configuration parameters could not be evaluated dynam-
ically and were required to be explicitly set in the input file. This limitation meant it was
impossible to include any scripting within the configuration file. This limitation was recog-
nized by the CMS Collaboration and they quickly made the choice to instead transition to
Python (in 2006) based configuration files. At that time, a choice was made that the Python
evaluation of configuration code would be distinctly delineated from framework and module
processing. Therefore, once the configuration file was interpreted, all configuration informa-
tion was cast as const within C++ objects and immutable. Due to the requirement within
CMSSW for strict inclusion of provenance information in the EDM, the dynamic evaluation
of configuration files then cast as const parameters and stored in the EDM was not consid-
ered a limitation to reproduction from raw data. When the art framework was forked from
CMSSW in 2010, the art framework reverted back to using FHiCL language configuration
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files, and, while acceptable to experiments at the time of adoption, some consider this a
serious limitation.

One of the challenges faced by the art framework has been the portability of the framework
to platforms other than Scientific Linux Fermilab or Cern. The utilization of the Fermilab
UPS and cetbuildtools products within the build and release system that was integrated into
the art suite resulted in reliance upon those products that is difficult to remove and therefore
port to other platforms (OS X, Ubuntu, etc). The CMSSW framework was implemented
for CMS such that the build system was completely available from source and mechanisms
for porting to experiment-supported platforms is integrated into the build system. While
portability of art is not an inherent problem of the software framework design, and is cur-
rently being addressed by both Fermilab SCD and collaborative experiments, it serves as a
significant design lesson when moving forward with art or designing other frameworks in the
future.

4.4 IceTray
IceTray [34] is the software framework used by the IceCube experiment and also ported to
SeaTray for the Antares experiment. The framework is similar to other previously described
frameworks in that it takes advantage of modular design for development and processing.
Processing within the framework has both analysis modules and services similar to those
described for Gaudi, CMSSW, and art. The IceTray framework and modules are written
in the C++ language. The data structure for IceTray is designated a “frame” and contains
information about geometry, calibration, detector status, and physics events. Unlike other
frameworks described, IceTray allows for multiple frames to be active in a module at the
same time. This was implemented due to the nature of the IceCube detector and the need to
delay processing an “event” until information from more than the current frame is analyzed.
This is accomplished through the use of a uniquely designed I/O mechanism utilizing Inboxes
and Outboxes for modules. A module can have any number of Inboxes and Outboxes. The
development of IceTray was done within the IceCube experiment based upon a specific set
of requirements in 2003.

4.5 Opportunities for Improvement
Some best practices relevant to event processing frameworks are identified:

open community
Make source-code repositories, bug tickets and mailing lists (user and developer) available for
anonymous reading and lower the barrier for accepting contributions from the community.

modularity
Separate the framework code into modular compilation units with clear interfaces which
minimize recompilation. The system should work when optional modules are omitted and
allow different modules to be linked at run-time.

documentation
Produce descriptions of the concepts, design and implementation of the framework and guides
on installation, extension and use of the framework.

The community should work towards making one event processing framework which is
general purpose enough to service multiple experiments existing at different scales. This
framework should be ultimately developed by a core team with representation from multiple,
major stake-holder experiments and with an open user/developer community that spans
other experiments. Steps to reach this goal may include:
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• Form an expert working group to identify requirements and features needed by such a
general use event processing framework. Much of this exists in internal and published
notes and needs to be pulled together and made comprehensive.

• The working group should evaluate existing frameworks with significant user base
against these requirements and determine what deficiencies exist and the amount of
effort required to correct them.

• The working group should recommend one framework, existing or novel, to develop as
a widely-used, community-supported project.

• The working group should conclude by gauging interest in the community, survey
experiments to determine what involvement and use can be expected and determine a
list of candidate developers for the next step.

• Assemble a core team to provide this development and support (something similar to
the ROOT model). Direct support, which is independent from specific experiment
funding, for some significant portion of this effort is recommended.

5 Software Development

5.1 Description
The tools supporting the full software development life-cycle can be partitioned into these
orthogonal categories.

Code Repositories store a historical record of revisions to a code base including information
on when a change is made, the identity of the developer and some note explaining the
change. Repositories may be organized to hold a single logical unit of source code (i.e., a
source package) or may include multiple such units relying on some internal demarcation.
They allow diverging lines of development, merging these lines and placing labels to identify
special points in the history (i.e., release tags).

Package Build System contains tools applied to the files of source package in order to
transform them into some number of resulting files (executable programs, libraries). Typ-
ically the system executes some number of commands (compilers, linkers) while applying
some number of build parameters (debug/optimized compilation, locating dependencies, ac-
tivating code features). This system may directly install the results of the build to some
area or in addition it may collect the build results into one or more binary packages.

Release Configuration contains tools or specifications for the collection of information
needed to build a cohesive suite of packages. It includes the list of packages making up the
suite, their versions, any build parameters, file system layout policy, source locations, any
local patch files and the collection of commands needed to exercise the package build system.

Release Build System contains tools or processes (instructions) that can apply a release
configuration to each package build system in the software suite. This process typically
iterates on the collection of packages in an order that honors their inter-dependencies. As
each package is built, the release build system assures it is done in a proper context containing
the build products of dependencies and ideally, controlling for any files provided by the
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general operating system or user environment. This system may directly install the results
of the build to some area and it may collect the build results into one or more binary packages.

Package Installation System contains tools that, if they are produced, can download and
unpack binary packages into an installation area. This system is typically tightly coupled
to the binary package format. It may rely on meta data internal or external to the binary
package file in order to properly resolve dependencies, conflicts or perform pre- and post-
installation procedures. The system may require privileged access and a single rooted file
system tree or may be run as an unprivileged user and allow for multiple and even interwoven
file system trees.

User Environment Management contains tools that aggregate a subset of installed soft-
ware in such a way that the end user may properly execute the programs it provides. This
aggregation is typically done through the setting of environment variables interpreted by
the shell, such as PATH. In other cases the bulk of aggregation is done via the file system
by copying or linking files from some installation store into a more localized area and then
defining some minimal set of environment variables. In the case where software is installed
as system packages environment management may not be required.

Development Environment Management contains tools to assist the developer in mod-
ifying existing software or writing novel packages. Such tools are not strictly required as a
developer may use tools from the above categories to produce a personal release. However,
in practice this makes the development cycle (modify-build-test loop) unacceptably long. To
reduce this time and effort, existing release builds can be leveraged, installation steps can
be minimized or removed, and environment management can be such as to use the build
products in-place. Care is needed in designing such tools to mitigate interference between
individual developers while allowing them to synchronize their development as needed.

Continuous Integration contains tools and methodologies for developing and exercising
the code in order to validate changes, find and fix problems quickly, and vet releases.

Issues Tracker contains tools to manage reporting, understanding and addressing problems
with the software, requests for new features, and organizing and documenting releases.

The following sections give commentary on what aspects are successful for providing
general, cross-experiment benefit and what failings are identified. Explicit examples and
areas where improvement may be made are given.

5.2 Follow Free Software
The Free Software (FS) and the Open Source (OS) communities have a large overlap with
HEP in terms of how they develop and use software. FS/OS has been very successful in
achieving beneficial sharing of software, largely due to that being a primary goal of the
community. It is natural then for the HEP software community to try to emulate FS/OS.

Of course, the HEP community already benefits greatly from adopting many libraries
and tools from FS/OS. The community is relatively open with its software development (in
comparison to, for example, industry).

There are however some ways in which the HEP community currently differs from the
FS/OS. Due to the nature of the HEP effort, some of these differences are necessary, whereas
in other areas improvements can be made.

• Physics is the primary focus, not software. Of course this is proper. But, software is
often not considered as important as other secondary aspects such as detector hardware
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design despite the fact that detector data is essentially useless today without quality
software. Even in areas where software is the focus, often the “hard core” software
issues are down-played or considered unimportant.

• The use and development of HEP software is often tightly intertwined. End users of
software are often its developers. Making formal releases is often seen as a hindrance
or not performed due to lack of familiarity or access to easily usable release tools.

• HEP software typically must be installed with no special permissions (non-“root”), in
non-system locations, and with multiple versions of the software available on the same
system. User/developers will often need to maintain locally modified copies of the
software that override but otherwise rely on some centrally shared installation.

• Versions matter a lot until they don’t. A single code commit may radically change
results and so upgrades must be done with care and changes constantly validated.
Old versions must be kept accessible until new ones are vetted. They then become
unimportant but must be forever reproducible in case some issue is found in the future
which requires rerunning of the old version.

• HEP software suites tend to be relatively large, often with the majority consisting of
software authored by HEP physicists. Their design often requires an all-or-nothing
adoption. Lack of careful modular components with well defined interfaces lead to
design complexity and practical problems such as compilation time. Dependencies
must be carefully handled and tested when lower-layer libraries are modified.

5.3 Category Integration
The categories described in Section 5.1 present some ideal partitioning. Real world tools
often cover multiple categories. When this integration is done well it can be beneficial.
Where it is not done well it can lead to lock-in, lack of portability, increased maintenance
costs and other pathologies.

The functions of Configuration Management Tools (CMT) spans most of these categories.
Its design is such that it provides beneficial integration with some capability to select the
categories in which to apply it. For example, it provides a package build system but one which
is flexible enough to either directly execute build commands or to delegate to another package
build system. This allows building and use of external packages to achieve symmetry with
packages developed by the experiment. The configuration system is flexible enough to tightly
control versions for releases or to relax dependency conditions suitable for a development
context. The same information used to build packages is used to generate shell commands
to configure the end-user environment.

CMT was initially used by LHC experiments but has successfully been adopted by others
outside of CERN (Daya Bay, Minerva, Fermi/GLAST, and others). It is used across the
three major computer platforms (Linux, Mac OS X, and Windows).

In contrast is the UPS/CET system from Fermilab currently used to build the art frame-
work and its applications. UPS itself shares some passing familiarity to CMT although its
implementation is such that even its proponents do not typically use it fully as it was de-
signed. Its entire ability to build packages is largely avoided. Its other primary purpose of
managing the user environment is often augmented with custom shell scripts.

The CET portion adds a package build system based on CMake but with hardwired en-
tanglements with UPS. It tightly locks in to the source code which versions of dependencies
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must be built against and the mechanism to locate them. Developers commonly have their
own effort derailed if they attempt to incorporate work from others as any intervening release
forces their development base to become broken and require reinitializing. Attempting to
port the software (art and LArSoft) entangled with this build system from the only sup-
ported Linux distribution (Scientific Linux) to another (Debian) was found to be effectively
impossible in any reasonable time frame. This has led to an effort by the LBNE collaboration
to fully remove the UPS/CET package build system from this software and replace it with
one still based on CMake but which follows standard forms and best practices. It took far
less effort to reimplement a build system than to adopt the initial one. Effort is ongoing to
incorporate these changes back into the original software.

The astrophysics experiment LSST has developed a system, EUPS [35], based on UPS,
for code builds which allows local builds on an experiment collaborators’ laptop or server
and which probes the users local machine for already installed standard packages (such as
python). This system may be worth a look for smaller scale experiments [36].

5.4 Distributed Software Tools
Network technology has lead to paradigm shifts in binary code distribution (e.g., CVMFS)
and in distributing data (e.g., XRootD). HEP software development has always been very
distributed and it is important to continue to embrace this.

One successful embrace has been the move to git for managing source code revisions. In
comparison, any code development that is still kept in Concurrent Versions System (CVS)
or Subversion (SVN) is at a relative disadvantage in terms of the ability to distribute devel-
opment effort and share its results.

Aggregating git repositories along with associated issue trackers, web content (wikis) to
provide a definitive, if only by convention, center of development is also important. Some
institutions provide these aggregation services (Fermilab’s Redmine) but the full benefit
comes when the software is exposed in a more global way such as through online repository
aggregators like GitHub or BitBucket.

Building software is an area that would benefit from a more distributed approach. The
traditional model is that the software needed by the experiment is built from source by a
site administrator or an individual. In some cases, an institution will take on the job of
building software for multiple experiments such as is done for some experiments centered at
CERN and Fermilab. While this service is helpful for users of the platforms supported by
the institution, it tends to lock out users who do not use the officially supported computer
platforms. These unsupported platforms are otherwise suitable for use and are often more
advanced than the officially supported ones. Small incompatibilities build up in the code
base because they go undetected in the relative monoculture created by limiting support to
a small number of platforms.

Distributed software build and installation systems are becoming established and should
be evaluated for adoption. Examples include the package management systems found in the
Nix and Guix operating systems. These allows one individual to build a package in such a
way that it may be used by anyone else. They also provide many innovative methods for
end-user package aggregation which leverage the file system instead of polluting the user’s
environment variables.

Another example is Conda which provides a method to bundle up the build configuration
and a one-package unit of a release build system. It also provides an end-user tool to install
the packaged results. A coupled project is Binstar which can be thought of as a mix between
GitHub and the Python Package Index (PyPI). It allows upload and distribution of packages
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built by Conda for later end-user download and installation.
HEP community software projects and individual experiments can make use of either

the Nix/Guix or Conda/Binstar approaches to provide ready-to-use code binaries to any
networked computer in a trusted manner. Sharing and coordinating the production of these
packages would take additional effort but this will be paid back by the reduction of so much
redundant effort that goes into building the same package by each individual, experiment or
project.

5.5 Automate
The majority of most HEP software suites are composed of four layers: the experiment
software on top is supported by general-use HEP software. Below that is FS/OS packages
which may be included in some operating system distributions but in order to control versions
and to provide a uniform base for those OS distributions which do not provide them, they are
built from source. Finally, there is some lowest layer provided by the OS. Each experiment
draws each of these lines differently and some may choose to blur them.

To produce proper and consistent release configurations and to track them through time
is challenging. Once created, in principle, a system can then apply these configurations in
a way that automates the production of the release build. Without this automation the
amount of effort balloons. This is only partially mitigated by distributing the build results
(addressed above).

Some experiments have developed their own build automation based on scripts. These
help the collaborators but they are not generally useful.

CERN developed LCGCMT which, in part, provides automated building of “externals” via
the LCG_Builders component. This system is specifically tied to CMT and is particularly
helpful if CMT is adopted as a release build system. This mechanism has been adopted by
groups outside of CERN, specifically those that also adopted the Gaudi event processing
framework. It has been specifically adopted by other experiments.

Growing out of the experience with custom experiment-specific automation and LCGCMT,
the Worch [37] project was developed to provide build “orchestration”. This includes a re-
lease configuration method and an automated release build tool. It is extensible to provide
support for the other software development tool categories. For example, it has support for
producing needed configuration files to provide support for using Environment Modules as
a method for end-user environment management.

5.6 Opportunities for Improvement
Some best practices in the area of software development tools are:

Leverage Free Software Rely on Free Software/Open Source and do not become shackled
to proprietary software or systems.

Portability Do not limit development to specific platform or institutional details.

Automate Produce builds and tests of software stacks in an automated manner that is
useful to both end-user/installers and developers.

Some concrete work that would generally benefit software development efforts in HEP
includes:

• Form a cross-experiment group to determine requirements for tools for build automa-
tion, software release management, binary packaging (including their format), end-user
and developer environment management.

Page 25



HEP-FCE Working Group Reports

• Form teams to design, identify or implement tools meeting these requirements.

• Assist experiments in the adoption of these tools.

6 Data Management

6.1 Definition
Data Management is any content neutral interaction with the data, e.g., it is the data flow
component of the larger domain of Workflow Management (see Section 7.2.3). It addresses
issues of data storage and archival, mechanisms of data access and distribution and curation
– over the full life cycle of the data. In order to remain within the scope of this document we
will concentrate on issues related to data distribution, metadata and catalogs, and will not
cover issues of mass storage in much detail (which will be covered by the Systems Working
Group). Likewise, for the most part network-specific issues fall outside of our purview.
6.2 Moving Data

6.2.1 Modes of Data Transfer and Access
In any distributed environment (and most HEP experiments are prime examples of that) the
data are typically stored at multiple locations, for a variety of reasons, and over their lifetime
undergo a series of transmissions over networks, replications and/or deletions, with attendant
bookkeeping in appropriate catalogs. Data networks utilized in research can span hundreds of
Grid sites across multiple continents. In HEP, we observe a few different and distinct modes
of moving and accessing data (which, however, can be used in a complementary fashion).
Consider the following:
Bulk Transfer
In this conceptually simple case, data transport from point A to point B is automated and
augmented with redundancy and verification mechanism so as to minimize chances of data
loss. Such implementation may be needed, for example, to transport “precious” data from the
detector to the point of permanent storage. Examples of this can be found in SPADE (data
transfer system used in Daya Bay) and components of SAM [38] and File Transfer Service at
FNAL. Similar functionality (as a part of a wider set) is implemented in the Globus Online
middleware kit [39].
Managed Replication
In many cases the data management strategy involves creating replicas of certain segments
of the data (datasets, blocks, etc.) at participating Grid sites. Such distribution is done
according to a previously developed policy which may be based on storage capacities of
the sites, specific processing plans (cf. the concept of subscription), resource quota and any
number of other factors. Good examples of this type of systems are found in ATLAS (Rucio)
and CMS (PhEDEx), among other experiments [40, 41].
“Data in the Grid” (or Cloud)
In addition to processing data which is local to the processing element (i.e. local storage),
such as a Worker Node on the Grid, it is possible to access data over the net-work, pro-
vided there exists enough bandwidth between the remote storage facility or device, and the
processing element. There are many ways to achieve this. Examples include:

• using http to pull data from a remote location before executing the payload job. This
can involve private data servers or public cloud facilities.
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• utilizing XRootD [42, 43] over WAN to federate storage resources and locate and deliver
files transparently in a “just-in-time” manner.

• sharing data using middleware like Globus [39].

Choosing the right approaches and technologies is a two-tiered process. First, one needs
to identify the most relevant use cases and match them to categories such as outlined above
(e.g. replication vs network data on demand). Second, within the chosen scenario, proper
solutions must be identified (and hopefully reused rather than reimplemented).

6.2.2 From MONARC to a Flat Universe
The MONARC architecture is a useful case study, in part because it was used in the LHC Run
1 data processing campaign, and also because it motivated the evolution of approaches to
data management which is currently under way. It stands for Models of Networked Analysis
at Regional Centers [44]. At the heart of MONARC is a manifestly hierarchical organization
of computing centers in terms of data flow, storage and distribution policies defined based on
characteristics and goals of participating sites. The sites are classified into “Tiers” according
to the scale of their respective resources and planned functionality, with “Tier-0” denomina-
tion reserved for central facilities at CERN, “Tier-1” corresponding to major regional centers
while “Tier-2” describes sites of smaller scale, to be configured and used mainly for analysis
of the data (they are also used to handle a large fraction of the Monte Carlo simulations
workload). Smaller installations and what is termed “non-pledged resources” belong to Tier-
3 in this scheme, implying a more ad hoc approach to data distribution and handling of the
computational workload on these sites. The topology of the data flow among the Tiers can
be described as somewhat similar to a Directed Acyclic Graph (DAG), where data undergoes
processing steps and is distributed from Tier-0 to a number of Tier-1 facilities, and then on
to Tier-2 sites – but Tiers of the same rank do not share data on a peer-to-peer (P2P) basis.
This architecture depends on the coordinated operation of two major components:

• The Data Management System, that includes databases necessary to maintain records
of the data parameters and location, and which is equipped with automated tools
to move data between computing centers according to chosen data processing and
analysis strategies and algorithms. An important component of the data handling is
a subsystem for managing Metadata, i.e., information derived from the actual data
which is used to locate specific data segments for processing based on certain selection
criteria.

• The Workload Management System (WMS) – see Section 7 – which distributes compu-
tational payload in accordance with optimal resource availability and various applicable
policies. It typically also takes into account data locality in order to minimize net-
work traffic and expedite execution. A mature and robust WMS also contains efficient
and user-friendly monitoring capabilities, which allows its operators to monitor and
troubleshoot workflows executed on the Grid.

While there were a variety of factors which motivated this architecture, considerations of
overall efficiency, given limits of storage capacity and network throughput, were the primary
drivers in the MONARC model. In particular, reconstruction, reprocessing and some initial
stages of data reduction are typically done at the sites with ample storage capacity so as to
avoid moving large amount of data over the network. As such, it can be argued that the
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MONARC architecture was ultimately influenced by certain assumptions about bandwidth,
performance and reliability of networks which some authors now call “pessimistic” [45] (p.
105).

At the time when LHC computing was becoming mature, great progress was made in
improving characteristics of the networks serving the LHC projects. New generation of
networks have lower latencies, lower cost per unit of bandwidth and higher capacity. This
applies to both local and wide area networks [45] (p. 104). This development opens new
and significant possibilities which were not available until relatively recently; as stated in
Ref. [45]:

The performance of the network has allowed a more flexible model in terms of data access:

• Removal of the strict hierarchy of data moving down the tiers, and allowing a more
P2P data access policy (a site can obtain data from more or less any other site);

• The introduction of the ability to have remote access to data, either in obtaining
missing files needed by a job from over the WAN, or in some cases actually streaming
data remotely to a job.

In practice, this new model results in a structure which is more “flat” and less hierarchi-
cal [45, 46] and indeed resembles the P2P architecture.

In principle, this updated architecture does not necessarily require new networking and
data transmission technologies when compared to MONARC, as it mainly represents a dif-
ferent logic and policies for distribution of, and access to data across multiple Grid sites.
Still, there are a number of differing protocols and systems which are more conducive to
implementing this approach than others, for a variety of reasons:

• Reliance on proven, widely available and low-maintenance tools to actuate data transfer
(e.g., utilizing HTTP/WebDAV).

• Automation of data discovery in distributed storage.

• Transparent and automated “pull” of required data to local storage.

One outstanding example of leveraging the improved networking technology is XRootD –
a system which facilitates federation of widely distributed resources [47, 48]. While its use in
HEP is widespread, two large-scale applications deserve a special mention: it is employed in
the form of CMS’s “Any Data, Anytime, Anywhere” (AAA) project and ATLAS’s “Federating
ATLAS storage systems using Xrootd” (FAX) project, both of which rely on XRootD as their
underlying technology. “These systems are already giving experiments and individual users
greater exibility in how and where they run their workflows by making data more globally
available for access. Potential issues with bandwidth can be solved through optimization
and prioritization” [48].

6.3 Metadata, Data Catalogs and Levels of Data Aggregation
To be able to locate, navigate and manage the data it has to be described, or characterized.
Metadata (data derived from the data) is therefore a necessary part of data management.
The list of possible types of metadata is long. Some key ones are:

• Data Provenance: for raw data, this may include information on when and where it
was taken. For processed data, it may specify which raw data were used. For many
kinds of data, it is important to track information about calibrations used, etc.
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• Parentage and Production Information: one must keep track of software releases and
its configuration details in each production step, be able to trace a piece of data to its
origin (e.g., where it was produced, by which Task ID etc.), etc.

• Physics: this may include analysis summary information or a specific feature charac-
terizing a segment of data, e.g. type of events selected, from which trigger stream data
was derived, detector configuration.

• Physical information: this might include the file size, check sum, file name, location,
format, etc.

Generally speaking, a data catalog combines a file catalog, i.e., information about where
the data files are stored, with additional metadata that may contain a number of attributes
(physics, provenance, etc.). This enables the construction of logical (virtual) data sets like
‘WIMPcandidatesLoose’ and makes it possible for users to select a subset of the available
data, and/or “discover” the presence and locality of data which is of interest to the user.
Grouping of data into datasets and even larger aggregation units helps handle complexity of
processing which involved a very large number of induvudual files. Here are some examples:

Fermi Data Catalog
Metadata can be created when a file is registered in the database. A slightly different ap-
proach was chosen by the Fermi Space Telescope Data Catalog. In addition to the initial
metadata, it has a data crawler that would go through all registered files and extract meta-
data like number of events, etc. The advantage is that the set of metadata then can be
easily expanded after the fact by letting loose the crawler with the list of new quantities to
extract, which then is just added to the existing list of metadata. Obviously this only works
for metadata included in the file and file headers. Note that since the Fermi Data Catalog is
independent of any workflow management system, any data processing metadata will have
to be explicitly added.

SAM (Sequential Access Model)
SAM is a data handling system developed at Fermilab. It is designed to track locations of files
and other file metadata. A small portion of this metadata schema is reserved for SAM use
and experiments may extend it in order to store their quantities associated with any given file.
SAM allows for the defining of a dataset as a query on this file metadata. These datasets
are then shorthand which can then be expanded to provide input data to for experiment
processes. Beyond this role as a file catalog, SAM has additional functionality. It can manage
the storage of files and it can serve an extended role as part of a workflow management
system. It does this through a concept called projects which are managed processes that
may deliver files to SAM for storage management and deliver files from storage elements to
managed processes. SAM maintains state information for files in active projects to determine
which files have been processed, which process analyzed each file, and files consumed by
failed processes. The installation footprint required for SAM to be used at a participating
site depends on the functionality required. Lightweight access to catalog functionality is
provided via the SAMWeb Services component through a REST web interface which includes
a Python client module. Full features, including file management, requires a SAM station
installation and these exist at a small number of locations.

ATLAS
Distributed Data Management in ATLAS (often termed DDM) has always been one of its
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focus areas, in part due to the sheer volume of data being stored, shared and distributed
worldwide (on multi-petabyte scale), and to the importance of optimal data placement to
ensure efficiency and high throughput of processing [49]. Just like with other major compo-
nents of its systems, ATLAS has evolved its data management infrastructure over the years.
The system currently utilized is Rucio [40]. We shall briefly consider basic concepts and
entities in this system pertaining to this section.

The atomic unit of data in ATLAS is the file. Above that, there are levels of data
aggregations, such as:

• dataset Datasets are the operational unit of replication for DDM, i.e., they may be
transferred to grid sites, whereas single files may not. Datasets in DDM may contain
files that are in other datasets, i.e., datasets may overlap.

• container Container is a collection of datasets. Containers are not units of replication,
but allow large blocks of data, which could not be replicated to a single site, to be
described in the system.

There are a few categories of metadata in Rucio:

• System-defined attributes (e.g., size, checksum, etc.)

• Physics attributes (such as number of events)

• Production attributes (parentage)

• Data management attributes

CMS
CMS also employs the concept of a dataset. Metadata resides in, and is being handled by the
“The Data Bookkeeping Service” (DBS). This service maintains information regarding the
provenance, parentage, physics attributes and other type of metadata necessary for efficient
processing. The Data Aggregation Service (DAS) is another critical component of the CMS
Data Management System. It “provides the ability to query CMS data-services via a uniform
query language without worrying about security policies and differences in underlying data
representations” [50].

6.4 Small and Medium Scale Experiments
Small and medium scale research programs often have smaller needs compared to the LHC
or other large experiments. In these cases, it will not be economical or feasible to deploy and
operate the same kind of middleware on the scale described in the previous Sections. Data
is often stored in a single or just a few geographical locations (‘host laboratories’), and data
processing itself is less distributed. However, many experiments today have data (or will
have data) characterized by volumes and complexity large enough to create and demand a
real data management system instead of resorting to manual mode (files in unix directories
and wiki pages). In fact, we already find that some of the same elements, i.e., extensive
metadata, data catalogs, XRootD, are also used by some smaller experiments. The main
challenge here is the very limited technical expertise and manpower available to develop,
adapt and operate these sorts of tools.

With Cloud technology recently becoming more affordable, available and transparent for
use in a variety of applications, smaller scale collaborations are making use of services such
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as Globus [39] to perform automated managed data transfers (cf. Section 6.2.1), implement
data sharing and realize the “Data in the Cloud” approach. For small and mid-scale projects,
platforms like Google Drive and Dropbox offer attractive possibilities to share and store data
at a reasonable cost, without having to own much of the storage and networking equipment
and to deploy a complex middleware stack.

6.5 Opportunities For Improvement

6.5.1 Modularity
One problem with Data Management systems is that they often tend to become monolithic
as more and more functionality is added (organically) – see Section 7.1. While this may
make it easier to operate in the short term, it makes it more difficult to maintain over the
long term. In particular, it makes it difficult to react to technical developments and update
parts of the system. It is therefore critical to make the system as modular as possible and
avoid tight couplings to either specific technologies or to other parts of the ecosystem, in
particular the coupling to the Workload Management System. Modularity should therefore
be part of the core design and specifically separating the Metadata Catalogs from Data
Movement tools, with carefully designed object models and APIs. This would also make
reuse easier to achieve.

6.5.2 Smaller Projects
Smaller experiments have different problems. Most small experiments have or will enter the
petabyte era and can no longer use a manual data management system built and operated
by an army of graduate students. They need modern data management tools. However, they
have neither the expertise to adapt LHC-scale tools for their use, neither the technical man-
power to operate them. Simplifying and downscaling existing large scale tools to minimize
necessary technical expertise and manpower to operate them, even at the price of decreasing
functionality, may therefore be a good option.

A second option is to take existing medium-scale data handling tools and repackage them
for more general use. The problem is, however, somewhat similar to what is described above.
Often these systems have become monolithic, have strong couplings to certain technologies
and significant work may be necessary to make them modular. This can be difficult to
achieve within the limited resources available and will need dedicated support.

Finally, a few recent Cloud solutions have became available (and are already used by small
to medium size project), such as Globus [39], Google Drive and Dropbox, among others.
They do provide a lot of the necessary functionality for data distribution and sharing, and
perhaps provide an optimal solution at this scale, when combined with a flexible and reusable
Metadata system (see notes on modularity above).

6.5.3 Federation
Lastly, the success of Federated Storage built on XRootD shows the importance of good
building blocks and how they can be arranged into larger successful systems.

7 Workflow and Workload Management

7.1 The Challenge of the Three Domains
In the past three decades, technological revolution in industry has enabled and was paralleled
by the growing complexity in the field of scientific computing, where more and more sophis-
ticated methods of data processing and analysis were constantly introduced, oftentimes at
a dramatically increased scale. Processing power and storage were becoming increasingly
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decentralized, leading to the need to manage these distributed resources in an optimal man-
ner. On the other hand, increasing sophistication of scientific workflows created the need
to support these workflows in the new distributed computing medium. Rapid evolution of
the field and time pressures to deliver in this competitive environment led to the design and
implementation of complete (to varying degrees) and successful solutions to satisfy the needs
of specific research projects. In general, this had two consequences:

• Integrated and oftentimes – not always – project-specific design of workflow and work-
load management (see 7.2.3 for definitions).

• Tight coupling of workflow and workload management to data handling components.

We observe that there are essentially three interconnected domains involved in this sub-
ject: Workflow Management, Workload Management, and Data Management. In many
systems (cf. Pegasus [51]) some of these domains can be “fused” (e.g., Workflow + Work-
load). In the following, we bring together a few standard definitions and real life examples
to help clarify relationships among these domains and in doing so form the basis for possible
HEP-FCE recommendations. Our goal will be twofold:

• to identify the features and design considerations proven to be successful and which
can serve as guidance going forward.

• to identify common design and implementation elements and to develop understanding
of how to enhance reusability of existing and future systems of this kind.

7.2 Description

7.2.1 Grid and Cloud Computing
According to a common definition, Grid Computing is the collection of computer resources
from multiple locations to reach a common goal. Oftentimes additional characteristics added
to this include decentralized administration and management and adherence to open stan-
dards. It was formulated as a concept in the early 1990s, and motivated by the fact that
computational tasks handled by large research projects had reached the limits of scalabil-
ity of most individual computing sites. On the other hand, due to variations in demand,
some resources were underutilized at times. There was therefore a benefit in implementing
a federation of computing resources, whereby large spikes in demand would be handled by
federated sites, while “backfilling” the available capacity with lower priority tasks submitted
by a larger community of users. Technologies developed in the framework of Grid Comput-
ing (such as a few reliable and popular types of Grid Middleware) became a major enabling
factor for many scientific collaborations including nuclear and high-energy physics.

Cloud Computing is essentially an evolution of the Grid Computing concept, with implied
higher degree of computing resources and data storage abstraction, connectivity and trans-
parency of access. In addition, Cloud Computing is characterized by widespread adoption
of virtualization – which is also used in the traditional Grid environment but on a somewhat
smaller scale. At the time of writing, “Cloud” prominently figures in the context of com-
mercial services available on the Internet, whereby computing resources can be “rented” for
a fee in the form of a Virtual Machine allocated to the user, or a number of nodes in the
Cloud can be dynamically assigned to perform a neccesary computational task – often as a
transient, ephemeral resource. Such a dynamic, on-demand characteristic of the Cloud has
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led it to being described as an “elastic” resource. This attribute is prominently featured in
the name of the “Amazon Elastic Compute Cloud (EC2)”. This is an example of a public
Cloud, available to most entities in the open marketplace. Some organizations choose to
deploy Cloud technology on the computing resources directly owned and controlled by them,
which is then referred to as private Cloud.

Regardless of the obvious differentiation of Cloud computing (due to its characteristics as a
utility computing platform and pervasive reliance on virtualization), many of its fundamental
concepts and challenges are common with its predesessor, Grid Computing. In fact, the
boundary is blurred even further by existing efforts to enhance Grid middleware with tools
based on virtualization and Cloud API which essentially extend “traditional” Grid resources
with on-demand, elastic Cloud capability [52], leading to what is essentially a hybrid system.
The two are often seen as “complementary technologies that will coexist at different levels
of resource abstraction” [53]. Moreover, in parallel, many existing grid sites have begun
internal evaluations of cloud technologies (such as Open Nebula or OpenStack) to reorganize
the internal management of their computing resources. (See Ref. [54]).

In recent years, a few open-source, community developed and supported Cloud Com-
puting platforms have reached maturity, such as OpenStack [55]. OpenStack includes a
comprehensive set of components such as “Compute”, “Networking”, “Storage” and others
and is designed to run on standard commodity hardware. It is deployed at scale by large
organizations and serves as foundation for commercial Cloud services such as HP Helion [56].
This technology allows pooling of resources of both public and private Clouds, resulting in
the so-called Hybrid Cloud, where technology aims to achieve the best characteristics of both
private and public clouds.

There are no conceptual or architectural barriers for running HEP-type work ows in the
Cloud, and in fact, efforts are well under way to implement this approach [53]. However,
there are caveats such as

• Careful overall cost analysis needs to be performed before each decision to deploy on
the Cloud, as it is not universally cheaper than resources already deployed at research
centers such as National Laboratories. At the same time, the Cloud is an efficient way
to handle peak demand for the computing power due to its elasticity. It should also
be noted that some national supercomputing centers have made part of their capacity
available for more general high throughput use and may be an cost effective alternative.

• Available bandwidth for staging in/staging out data in the Cloud (and again, its cost)
need to be quantified and gauged against the project requirements.

• Cloud storage cost may be an issue for experiments handling massive amounts of
data [53] (p. 11)

7.2.2 From the Grid to Workload Management
Utilization of Grid sites via appropriate middleware does establish a degree of resource
federation, but it leaves it up to the user to manage data movement and job submission to
multiple sites, track job status, handle failures and error conditions, aggregate bookkeeping
information and perform many other tasks. In the absence of automation, this does not scale
very well and limits the efficacy of the overall system.

It was therefore inevitable that soon after the advent of reliable Grid middleware, mul-
tiple physics experiments and other projects started developing and deploying Workload
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Management Systems (WMS). According to one definition, “the purpose of the Workload
Manager Service (WMS) is to accept requests for job submission and management coming
from its clients and take the appropriate actions to satisfy them” [57]. Thus, one of the
principal functions of a Workload Management System can be described as “brokerage”, in
the sense that it matches resource requests to the actual distributed resources on multiple
sites. This matching process can include a variety of factors such as access rules for users
and groups, priorities set in the system, or even data locality – which is in fact an important
and interesting part of this process [58].

In practice, despite differing approaches and features, most existing WMS appear to share
certain primary goals, and provide solutions to achieve these (to a varying degree). Some
examples are:

• Insulation of the user from the complex and potentially heterogeneous environment of
the Grid, and shielding the user from common failure modes of the Grid infrastructure.

• Rationalization, bookkeeping and automation of software provisioning – for example,
distribution of binaries and configuration files to multiple sites.

• Facilitation of basic monitoring functions, e.g., providing efficient ways to determine
the status of jobs being submitted and executed.

• Prioritization and load balancing across computing sites.

• Implementation of interfaces to external data management systems, or actual data
movement and monitoring functionality built into certain components of the WMS.

We shall present examples of existing WMS in one of the following sections.

7.2.3 Workflow vs Workload
A scientific workflow system is a specialized case of a workflow management system, in
which computations and/or transformations and exchange of data are performed according
to a defined set of rules in order to achieve an overall goal [51, 59, 60]. In the context of
this document, this process involves execution on distributed resources. Since the process
is typically largely (or completely) automated, it is often described as “orchestration” of
execution of multiple interdependent tasks. Work ow systems are sometimes described using
the concepts of a control flow, which refers to the logic of execution, and data flow, which
concerns itself with the logic and rules of transmitting data. There are various patterns
identified in both control and dataflow [61]. A complete discussion of this subject is beyond
the scope of this document.

A simple and rather typical example of a workflow is often found in Monte Carlo simula-
tion studies performed in High Energy Physics and related fields, where there is a chain of
processing steps similar to the pattern below:

Event Generation ⇒ Simulation ⇒ Digitization ⇒ Reconstruction

Patterns like this one may also include optional additional steps (implied or made explicit
in the logic of the workflow) such as merging of units of data (e.g., files) for more efficient
storage and transmission. Even the most trivial cases of processing, with one step only, may
involve multiple files in input and/or output streams, which creates the need to manage this
as a workflow. Oftentimes, however, workflows that need to be created by researchers are
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quite complex. At extreme scale, understanding the behavior of scientific workflows becomes
a challenge and an object of studies in its own right [62].

Many (but not all) workflows important in the context of this document can be modeled
as Directed Acyclic Graphs (DAG) [51, 59, 63]. Conceptually, this level of abstraction of
the workflow does not involve issues of resource provisioning and utilization, monitoring,
optimization, recovery from errors, as well as a plethora of other items essential for efficient
execution of workflows in the distributed environment. These tasks are handled in the
context of Workload Management which we very briefly described in Section 7.2.2.

In summary, we make a distinction between the Workflow Management domain which
concerns itself with controlling the scientific workflow, and Workload Management which is
a domain of resource provisioning, allocation, execution control and monitoring of execution,
etc. The former is a level of abstraction above Workload Management, whereas the latter is
in turn a layer of abstractions above the distributed execution environment such as the Grid
or Cloud.

7.2.4 HPC vs HTC
The term High-Performance Computing (HPC) is used in reference to systems of exception-
ally high processing capacity (such as individual supercomputers, which are typically highly
parallel systems), in the sense that they handle substantial workloads and deliver results over
a relatively short period of time. By contrast, in conventional usage, HTC (High-Throughput
Computing) involves harnessing a wider pool of more conventional resources in order to de-
liver a considerable amount of computational power, although potentially over longer periods
of time. Note, however, that simulation campaigns, or long single runs on HPC resources
can often take as long as typical HTC timescales. Nevertheless, it is reasonable to state that,
“HPC brings enormous amounts of computing power to bear over relatively short periods of
time. HTC employs large amounts of computing power for very lengthy periods” [64].

In practice, the term HTC does cover most cases of Grid Computing where remote re-
sources are managed for the benefit of the end user and are often made available on a
prioritized and/or opportunistic basis (e.g., the so-capped “spare cycles” or “backfilling”, uti-
lizing temporary drops in resource utilization on certain sites to deploy additional workload
thus increasing the overall system throughput). A majority of the computational tasks of
the LHC experiments were completed using standard off-the-shelf equipment rather than
supercomputers. It is important to note, however, that modern Workload Management Sys-
tems can be adapted to deliver payload to HPC systems such as Leadership Class Facilities
in the US, and such efforts are currently under way [65, 66].

7.2.5 The Role of Data Management
In most cases of interest to us, data management plays a crucial role in reaching the scientific
goals of an experiment. It is covered in detail separately (see Section 6). As noted above,
it represents the dataflow component of the overall workflow management and therefore
needs to be addressed here as well. In a nutshell, we can distinguish between two different
approaches to handling data – on one hand, managed replication and transfers to sites, and on
the other hand, network-centric methods of access to data repositories such as XRootD [42,
43]. An important design characteristic which varies widely among Workflow Management
Systems is the degree of coupling to the Data Management components. That has significant
impact on reusability of these systems as a more tight coupling usually entails necessity of a
larger and more complex stack of software than would otherwise be optimal and has other
consequences.
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7.3 Examples

7.3.1 The Scope of this Section
Workflow and Workload Management, especially taken in conjunction with Data Manage-
ment (areas with which they are typically interconnected) is a vast subject and covering
features of each example of WMS in any detail would go well beyond the scope of this docu-
ment. In the following, we provide references to those systems which are more immediately
relevant to HEP and related fields than others.

7.3.2 HTCondor and glideinWMS
HTCondor [67] is one of the best known and important set of Grid and HTC systems. It
provides an array of functionality, such as a batch system solution for a computing cluster,
remote submission to Grid sites (via its Condor-G extension) and automated transfer (stage-
in and stage-out) of data. In the past decade, HTCondor was augmented with a Workload
Management System layer, known as glideinWMS [68]. The latter abstracts remote resources
(Worker Nodes) residing on the Grid and effectively creates a local (in terms of the interface)
resource pool accessible by the user. Putting these resources behind the standard HTCondor
interface with its set of utilities is highly beneficial to the users already having familiarity
with HTCondor since it greatly shortens the learning curve. On the other hand, deployment
of this system is not always trivial and typically requires a central service to be operated
with the desired degree of service level (the so-called “glidein factory”).

HTCondor has other notable features. One of the most basic parts of its functionality
is the ability to transfer data consumed and/or produced by the payload job according to
certain rules set by the user. This works well when used in local cluster situations and is
somewhat less reliable when utilized at scale in the context of the Grid environment. One of
the HTCondor components, DAGMan, is a meta-scheduler which uses DAGs (see 7.2.3) to
manage workflows [69]. In recent years, HTCondor has been augmented with Cloud-based
methodologies and protocols (cf. 7.2.1).

7.3.3 Workload Management for LHC Experiments
This is the list of systems (with a few references to bibliography) utilized by the major LHC
experiments - note that in each, we identify components representing layers or subdomains
such as Workload Management etc.:

Project Workload Mgt Workflow Mgt Data Mgt
ATLAS PanDA [58] ProdSys2 Rucio [40]
CMS GlideinWMS [68] Crab3 [70] PhEDEx [41, 71]
LHCb DIRAC [72] DIRAC Production Mgt DIRAC DMS
Alice gLite WMS [73] AliEn [74] AliEn [74]

7.3.4 @HOME
There are outstanding examples of open source middleware system for volunteer and grid
computing, such as BOINC [75] (the original platform behind SETI@HOME), FOLD-
ING@HOME and MILKYWAY@HOME [76]. The central part of their design is the server-
client architecture, where the clients can be running on a variety of platforms, such as PCs
and game consoles made available to specific projects by volunteer owners. Deployment on
a cluster or a farm is also possible.
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While this approach to distributed computing won’t work well for most experiments at
the LHC scale (where moving significant amounts of data presents a perennial problem) it is
clearly of interest to smaller scale projects with more modest I/O requirements. Distributed
platforms in this class have been deployed, validated and used at scale.
7.3.5 European Middleware Initiative
The European Middleware Initiative [77] is a consortium of Grid services providers (such as
ARC, dCache, gLite, and UNICORE). It plays an important role in the the Worldwide LHC
Computing Grid (WLCG). The gLite [73] middleware toolkit was used by LHC experiments
as one of the methods to achieve resource federation on European Grids.
7.3.6 Fermi Space Telescope Workflow Engine
The Fermi workflow engine was originally developed to process data from the Fermi Space
Telescope on the SLAC batch farm. The goal was to simplify and automate the bookkeeping
for tens of thousands of daily batch jobs with complicated dependencies all running on a
general use batch farm while minimizing the (distributed) manpower needed to operate it.
Since it is a general workflow engine it can be easily extended to all types of processing
including Monte Carlo simulation and routine science jobs. It has been extended with more
batch interfaces and is routinely used to run jobs at IN2P3 Lyon, while being controlled by
the central installation at SLAC. It has also been adapted to work in EXO and SuperCDMS.
7.4 Common Features

7.4.1 “Pilots”
As mentioned in Section 7.2.2, one of the primary functions of a WMS is to insulate the user
from the heterogeneous and sometimes complex Grid environment and certain failure modes
inherent in it (e.g., misconfigured sites, transient connectivity problems, “flaky” worker nodes,
etc.). There is a proven solution to these issues, which involved the so called late binding
approach to the deployment of the computational payload.

According to this concept, it is not the actual “payload job” that is initially dispatched
to a Worker Node residing in a remote data center, but an intelligent “wrapper”, sometimes
termed a “pilot job”, which first validates the resource, its configuration and some details
of the environment (for example, outbound network connectivity may be tested). In this
context, “binding” means a matching process whereby the payload job (such as a production
job or a user analysis job) which is submitted to the WMS and is awaiting execution is
assigned to a live pilot which has already perfomed validation and configuration of the
execution environment (for this reason, this technique is sometimes referred to as “just-in-
time workload management”). Where and how exactly this matching process happens is the
subject of a design decision – in PanDA, it is done by the central server, whereas in DIRAC
this process takes place on the Worker Node by utilising the JobAgent [78].

With proper design, late binding brings about the following benefits:

• The part of the overall resource pool that exhibit problems prior to the actual job
dispatch is excluded from the matching process by design. This eliminates a very
large fraction of potential failures that the user would otherwise have to deal with and
account for, since the resource pool exposed to the user (or for an automated client
performing job submission) is effectively validated.

• Some very useful diagnostic and logging capability may reside in the pilot. This is very
important for troubleshooting and monitoring, which we shall discuss later. Problem-
atic resources can be identified and flagged at both the site and worker node level.
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• In many cases, the overall latency of the system (in the sense of the time between the
job submission by the user, and the start of actual execution) will be reduced – due to
the pilot waiting to accept a payload job – leading to a more optimal user experience
(again, cf. the “just-in-time” reference).

DIRAC was one of the first systems where this concept was proposed and successfully
implemented [72]. This approach also forms the architectural core of the PanDA WMS [79].

In distributed systems where the resources are highly opportunistic and/or ephemeral,
such as the volunteer computing we mentioned in Section 7.3.4, this variant of the client-
server model is the essential centerpiece of the design. In BOINC, the “core client” (similar
to a “pilot”) performs functions such as maintaining communications with the server, down-
loading the payload applications, logging and others [80].

In HTCondor and GlideinWMS (see Section 7.3.2) there is no concept of a sophisticated
pilot job or core client, but there is a glidein agent, which is deployed on Grid resources and
which is a wrapper for the HTCondor daemon process (startd). Once the latter is initiated
on the remote worker node it then joins the HTCondor pool. At this point, matching of
jobs submitted by the user to HTCondor slots becomes possible [68]. While this “lean client”
provides less benefits than more complex “pilots”, it also belongs to the class of late-binding
workload management systems, although at a simpler level.

7.4.2 Monitoring
The ability of the user or operator of a WMS to gain immediate and efficient access to infor-
mation describing the status of jobs, tasks (i.e. collections of jobs) and operations performed
on the data is an essential feature of a good Workload Management System [81]. For op-
erators and administrators, it provides crucial debugging and troubleshooting capabilities.
For the users and production managers, it allows better diagnostics of application-level is-
sues and performance, and helps to better plan the user’s workflow [82]. All three domains
involved in the present discussion (Workflow, Workload, Data) benefit from a monitoring
capability.

7.4.3 The Back-End Database
The power of a successful WMS comes in part from its ability to effectively manage state
transitions of the many objects present in the system (units of data, jobs, tasks, etc.). This
is made possible by utilizing a database to keep the states of these objects. Most current
implementations rely on a RDBMS for this function (e.g., ATLAS PanDA is using the
Oracle RDBMS at the time of writing). The database serves both as the core intrument in
the “brokerage” logic (matching of workload to resources) and as the source of data for many
kinds of monitoring.

In seeking shared and reusable solutions, we would like to point out that it is highly
desirable to avoid coupling of the WMS application code to a particular type or flavor of the
database system, e.g., Oracle vs. MySQL, etc. Such dependency may lead to difficulties in
deployment due to available expertise and maintenance policies at the target organization
and in some cases even licensing costs (cf. Oracle). Solutions such as an ORM layer or other
methods of database abstraction should be utilized to make possible utilization of a variety
of products as the back-end DB solution for the Workload Management System, without
the need to rewrite any significant amount of its code. This is all the more important in
light of the widening application of noSQL technologies in industry and research, since the
possibilities for future migration to a new type of DB must remain open.
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7.5 Intelligent Networks and Network Intelligence
Once again, the issue of network performance, monitoring and application of such informa-
tion to improve throughput and efficiency of workflow belongs to two domains, Workload
Management and Data Management. In itself, the network performance monitoring is not
a new subject by any means and effective monitoring tools have been deployed at scale [83].
However, until recently, network performance data was not widely used as a crucial factor
in managing the workload distribution in HEP domain in “near time”. In this approach,
network performance information is aggregated from a few sources, analyzed and used in
determine a more optimal placement of jobs relative to the data [84].

A complementary strategy is application of “Intelligent Networks”, whereby data conduits
of specified bandwidth are created as needed using appropriate SDN software, and utilized
for optimized data delivery to the processing location according to the WMS logic.
7.6 Opportunities for Improvement
7.6.1 Focus Areas
Technical characteristics of Workload Management Systems currently used in HEP and re-
lated fields are regarded as sufficient (including scalability) to cover a wider range of appli-
cations and some existing examples potentially support this point of view (cf. LSST and
AMS utilizing PanDA [82]). Therefore, the focus need not be on entirely new solutions,
but characterization of the existing systems in terms of reusability, ease of deployment and
maintenance, and efficient interfaces. We further itemize this as follows:
• Modularity – addressing the issue of the “Three Domains” (Section 7.1):

– WMS & Data: The interface of a Workload Management System to the Data
Management System needs to be designed in a way that excludes tight coupling
of one to another. This will allow deployment of an optimally scaled and effi-
cient WMS in environments where a pre-existing data management system is in
place, or where installation of a particular data management system puts too
much strain on local resources. For example, replicating an instance of a high-
performance and scalable system like Rucio which is currently used in ATLAS
would be prohibitively expensive for a smaller research organization.

– Workflow Management: The concept of scientific workflow management is
an old one, but recently it has come to the fore due to increased complexity
of data transformations in many fields of research, in HEP and in several other
disciplines. We recommend investigation of both existing and new solutions in
this area, and design of proper interfaces between Workflow Management systems
and underlying Workload Management systems.

• Pilots: The technique of deploying Pilot Jobs to worker nodes on the Grid adds
robustness, flexibility and adaptability to the system. It proved very successful at
extreme scale and the use of this technique should be encouraged. Creating application-
agnostic templates of pilot code which can be reused by different experiments at scales
smaller than LHC could be a cost-effective way to leverage this technique.

• Monitoring:

– Value: A comprehensive and easy-to-use monitoring system has a large impact on
the overall productivity of personnel operating a Workload Management System.
This area deserves proper investment of effort.
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– Flexibility: The requirements of experiments and other projects will vary, hence
the need for flexible and configurable solutions for the Monitoring System utilized
in Workload Management and Data Management.

• Back-End Database: Ideally, there should be no coupling between the WMS appli-
cation code and features of the specific database system utilized as its back-end – this
will hamper reusability. Such dependencies could be factored out and abstracted using
techniques such as ORM, etc.

• Networks: There are significant efficiencies to be obtained by utilizing network per-
formance data in the workload management process. Likewise, intelligent and config-
urable networks can provide optimal bandwidth for work ow execution.

• Cloud: Workload Management Systems deployed in this decade and beyond must be
capable of efficiently operating in both Grid and Cloud environment, and in hybrid
environments as well.

7.6.2 Summary of Recommendations

WMS Inventory
We recommend that future HEP planning activities should include an assessment of major
existing Workload Management Systems using criteria outlined in Section 7.6.1, such as

• Modularity, which would ideally allow avoiding deployment of monolithic solutions and
would instead allow utilization of proper platform and technologies as needed, in the
Data Management, Workload Management and Workflow Management domains.

• Flexibility and functionality of monitoring.

• Reduced or eliminated dependency on the type of the database system utilized as
back-end.

• Transparency and ease of utilization of the Cloud resources.

Such an assessment will be useful in a number of complementary ways:

• It will serve as a “roadmap” which will help organizations looking to adopt a system
for processing their workflows in the Grid and Cloud environment, to make technology
choices and avoid duplication of effort.

• It will help identify areas where additional effort is needed to improve the existing
systems in terms of reusability and ease of maintenance (e.g., implementing more
modular design).

• It will summarize best practices and experience to drive the development of the next
generation of distributed computing systems.

• It may help facilitate the developement of interopability layers in the existing WMS,
which would allow future deployment to mix and match components from existing
solutions in an optimal manner.
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Further, this assessment should also contain a survey of existing “external” (i.e., open
source and community-based) components that can be utilized in existing and future systems,
with proper interface design. The goal of this part of the exercise it to identify cases where
software reuse may help to reduce development and maintenance costs. For example, there
are existing systems for flexible workflow management which have not been extensively
evaluated for use in HEP and related fields.

It must be recognized that due to the complexity of the systems being considered, the
development of this assessment document will not be a trivial task and will require appro-
priate allocation of effort. However, due to the sheer scale of deployment of modern WMS,
and considerable cost of resources required for their operation, in terms of both hardware
and human capital, such an undertaking will be well justified.

Cloud Computing
HEP experiments are entering the era of Cloud Computing. We recommend continuation
of efforts aimed at investigating and putting in practice methods and tools to run scientific
workflows on the Grid. Careful cost/benefit analysis must be performed for relevant use
cases.

In addition to extending existing WMS to the Cloud, we must work in the opposite direc-
tion, i.e., to maintain efforts to evaluate components of frameworks such as OpenStack [55]
for possible “internal” use in HEP systems.

8 Geometry Information Management

8.1 Description
Almost every HEP experiment requires some system for geometry information management.
Such systems are responsible for providing a description of the experiment’s detectors (and
sometimes their particle beam-lines), assigning versions to distinct descriptions, tracking the
use of these versions through processing and converting between different representations of
the description.

The geometry description is consumed mainly for the following purposes:

• Simulate the passage of particles through the detector or beamline.

• Reconstruct the kinematic parameters and particle identity likely responsible for a
given detector response (real or simulated).

• Visualize the volumes to validate the description and in the context of viewing repre-
sentations of detector response and simulation truth or reconstructed quantities.

The prevailing model for geometry information in HEP is Constructive Solid Geometry
(CSG). This model describes the arrangement of matter by the placement of volumes into
other volumes up to a top level “world” volume. It is typical to describe this as a daughter
volume being placed into a mother volume. The placement is performed by providing a
transformation (translation plus rotation) between conventional coordinate systems centered
on each volume. A volume may have an associated solid shape of some given dimensions
and consist of some material with bulk and surface properties. With no such association the
volume is considered an “assembly”, merely aggregating other volumes.

While this model is predominant, there is no accepted standard for representing a de-
scription in this model. Instead, there are a variety of applications, libraries and tools, each
of which makes use of their own in-memory, transient object or persistent file formats.
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For example, Geant4 is a dominant particle-tracking Monte Carlo simulation likely used
by a majority of HEP experiments. It defines a set of C++ classes for the description of
a geometry and it can import a representation of a description in the form of an XML file
following the GDML schema. It has various built-in visualization methods and can export
to some number of other formats for consumption by others.

Another common example are the TGeo classes provided by ROOT. These can be con-
structed directly or via the import of a GDML file (with some technical limitations). Like
Geant4 objects, ROOT provides means to track rays through the geometry as well as a few
visualization techniques.

There are stand-alone visualization tools such as HepRApp (which take HEPREP files
that Geant4 can produce), GraXML (which can read GDML with some limitations or AGDD
XML). There are also CAD programs that can read OpenInventor files which can be pro-
duced. In experiments that make use of Gaudi and DetDesc, the PANORAMIX OpenInven-
tor based visualization library can be used.

8.2 Unified System
This variety has lead to a “tower of babel” situation. In practice, experiments limit themselves
to some subset of tools. Developing their own solutions is often seen as the least effort
compared to adopting others. This of course leads to an ever larger tower. Some common
ground can be had by converting between different representations. This is the approach
taken by the Virtual Geometry Model (VGM) [85] and the General Geometry Description
(GGD) [86].

VGM provides a suite of libraries that allow for applications to be developed which pop-
ulate one system of geometry objects (e.g., Geant4 or ROOT). These can then be converted
to a general representation and finally converted to some end-form. Care must be taken to
keep implicit units correct and in an explicit system of units (the one followed by Geant3).
There are no facilities provided for the actual authoring of the geometry description and
that is left to the application developer.

Addressing the need for an authoring system is a main goal of GGD. This system provides
a layered design. At the top is a simple text-based configuration system which is what is
expected to be exposed to the end user. This drives a layer of Python builder modules which
interpret the configuration into a set of general in-memory, transient objects. These objects
all follow a strict CSG schema which is conceptually compatible with that of Geant4. This
schema includes specifying an object’s allowed quantities and provides a system of units
not tied to any particular “client” system. A final layer exports these objects into other
representations for consumption by other applications, typically by writing a file. Access to
both the set of general geometry objects and any export-specific representation is available
for access in order to implement validation checks. Thus, in GGD the source of geometry
information for any “world” are the Python builder modules and the end-user configuration
files.

8.3 Problems with CAD
It is not unusual for an experiment at some point to consider integrating CAD to their geom-
etry information management system. CAD provides far better authoring and visualization
methods than most HEP geometry software. It is typical that a CAD model for an exper-
iment’s detectors or beamline must be produced for engineering purposes and it is natural
to want to leverage that information. However, there are several major drawbacks to this
approach.
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CAD models sufficient for engineering purposes typically contain excessive levels of in-
formation for HEP offline software purposes. Applied to a tracking simulation this leads to
an explosion in the number of objects that must be queried on each step of the particle’s
trajectory. It leads to large memory and CPU requirements with minimal or incremental
improvements in the quality of the simulation or reconstruction results.

Use of CAD usually requires expensive, proprietary software with significant expertise
required to use. This limits which individuals can effectively work on the geometry and
tends to lock in the success of the experiment to one vendor’s offering. It is typical for the
geometry description to require modification over a significant portion of the experiment’s
lifetime and these limitations are not acceptable.

Finally, the use of a CSG model is uncommon in CAD. Instead a surface-oriented descrip-
tion is used. For its use in Geant4, a CSG model is required. Converting from surfaces to
CSG is very challenging particularly if the CAD user has not attempted to follow the CSG
model in effect, if not in deed.

There is, however, potential in using CAD with HEP geometries. This is being explored
in GGD in the production of OpenInventor files which can be loaded into FreeCAD, a
Free Software CAD application. While FreeCAD can currently view an OpenInventor CSG
representation it cannot be used to produce them. However, FreeCAD is extensible to new
representation types. With effort, it may be extended to produce and operate on a suite of
novel CSG objects which follow a schema similarly to that required by Geant4.

8.4 Opportunities for Improvement
The “tower of babel” situation should be addressed by putting effort in to following areas:

• Form a small working group from geometry system experts to develop a formal data
schema to describe the CSG objects that make up a general geometry system. This
schema should be independent from any specific implementation but be consistent
with major existing applications (specifically Geant4 and ROOT). The schema should
be presented in a generic format but made available in a form that can be directly
consumed (eg, JSON or XML) by software.

• A general, transient data model for use in major programming languages (at least C++
and Python) should be developed which follows this schema. Independent and modular
libraries that can convert between this data model and existing ones (GDML, ROOT)
should be developed. One possibility is to further develop VGM in this direction.

• Develop a general purpose geometry authoring system that can produce objects in this
transient data model.

9 Conditions Databases

9.1 Description
Every HEP experiment has some form of “conditions database”. The purpose of such a
database is to capture and store any information that is needed in order to interpret or
simulate events taken by the DAQ system. The underlying principle behind such a database
is that the “conditions” at the time an event is acquired vary significantly slower than the
quantities read out by the DAQ in the event itself. The period over which these condition
quantities can change range from seconds to the lifetime of the experiment.
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In implementing a conditions database, an experiment is providing a mechanism by which
to associate an event to a set of conditions without having to save a complete copy of those
conditions with every event. A secondary feature is that the event-to-conditions association
can normally be configured to select a particular version of the conditions as knowledge
about the conditions can change over time as they are better understood.

9.2 Basic Concepts
It turns out that the basic concepts of a conditions database do not vary between experiments.
They all have the same issues to solve. Questions of scale, distribution and so forth can
depend on the size and complexity of the data model used for quantities within the database,
but these aspects are secondary and are addressed by the implementation. The resulting
software for experiment differ more in the choices of technologies used rather than in any
conceptual foundation.

9.2.1 Data Model
The Data Model of a conditions database defines how information is grouped in atomic
elements in that data base and how those atomic elements are structure so that clients can
recover the necessary quantity. This is the most experiment specific concept as it is directly
related to the object model used in the analysis and simulation codes. However the division
of condition quantities into the atomic elements is normally based on two criteria.

• The period over which a quantity varies, for example geometry may be updated once
a year, while a detector calibration may be measured once a week.

• The logical cohesiveness of the quantities, for example the calibrations for one detector
will be separate from those of another detector even if they are updated at the same
frequency.

9.2.2 Interval of Validity
The standard way of matching a conditions element to an event is by using a timestamp
related to the event’s acquisition. Given this time the conditions database is searched for the
instance of the element that was valid at that time. (What to do when multiple instances are
valid for a given time is dealt with by versioning, see Section 9.2.3.) This therefore requires
each entry in the conditions database to have an interval of validity stating the beginning
and end times, with respect to the events timestamp, for which it should be considered as
the value for its quantity.

As analysis often proceeds sequentially with respect to events, most implementations of
condition database improve their efficiency by caching the ‘current’ instance of a quantity
once it has been read from the database until a request is made for a time outside its interval
of validity. At this point the instance appropriate to the new time will be read in, along
with its interval of validity.

9.2.3 Versioning
During the lifetime of an experiment a database will accumulate more than one instance of
a conditions element that are valid for a given time. The two most obvious causes of this
are the following.

• A conditions element is valid from a given time to the end-of-time in order to make sure
there is always a valid instance of that element. At a later time during the experiment
a new value for the element is measured and this is now entered into the database with

Page 44



HEP-FCE Working Group Reports

its interval of validity starting later than the original instance but, as it in now the
most appropriate from there on out, its validity runs until the end-of-time as well.

• A conditions element may consist of a value derived from various measurements. In
principle this can be considered a ‘cached’ result of the derivation however it is treated
as a first class element in the conditions database. At some point later, a better way
of deriving the value is developed and this new value is placed in the database with
the same interval of validity as the orignal one.

In both cases there needs to be a mechanism for arbitrating which instances are used.
This arbitration is managed by assigning versions to each instance. The choice of which
version to be used depends on the purpose of the job that is being executed. If the purpose
of the job is to use the ‘best’ values then the ‘latest’ version is used, but if the purpose of the
job is to recreate the results of a previous job or to provide a known execution environment
then it must be possible to define a specific version to be used by a job.

In order for the above versioning to work there must be some monotonic ordering of the
versions. Typically this is done by the ‘insertion’ date which is the logical date when the
version was added to the database. It should be noted here that this date does not always
reflect the actual date the version was inserted, as that may not create the correct ordering
of versions.

9.3 Examples
The following is the subset of the implementations of a conditions database pattern already
done by HEP experiments.

9.3.1 DBI, Minos
This is a C++ binding that is decoupled from its surrounding framework, a feature that
allowed it be adopted by the Daya Bay Experiment for use in its Gaudi customization. It
has a very thin data model with a conditions item being a single row in an appropriate SQL
table.

9.3.2 IOVSvc, Atlas
The Atlas Interval of Validity Service, IOVSvc, is tightly bound to its Athena framework
(their customization of the Gaudi framework). It acts by registering a proxy that will be filled
by the service rather than direct calls to the service. It also has a feature where a callback
can be registered that is invoked by the service whenever the currently value conditions item
is no longer valid.

9.3.3 CDB, BaBar
The BaBar conditions database is notable in that during its lifetime it went through a
migration for an ObjectivityDB back-end to using RootDB. This means that it can be used
as an example of migrating conditions database implementations as suggested in the next
section.

9.4 Opportunities for Improvement
Given that the challenge of a conditions database, to match data to an events timestamp, is
universal and not specified to any style of experiment, and given that numerous solutions to
this challenge exist, there is little point in creating new ones. The obvious opportunities for
improvement are ones that make the existing solutions available for use by other experiment
in order to avoid replication (again). To this end the following approaches are recommended:
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• A detailed survey of the interface of existing solutions should be made. The result of
this survey should lead to the definition of a “standard” API for conditions databases
that is decoupled for any particular framework. This standard would be a superset of
the features found in existing implementations so that all features of a given imple-
mentation can be accessed via this API. Suitable language bindings, such as C++ and
python, so be provided as part of the standard.

• Given the standard API and language bindings provided by the previous item, main-
tainers of conditions database implementations should first be encouraged, where pos-
sible, to develop the necessary code to provide the API as part of their implementation.
They should then be encouraged to extend their own implementation to cover as much
of the API as it is possible for their technology to support.

• On the ‘consumer’ side of the API, existing framework maintainers should be encour-
aged to adapt their framework so that it can use the standard API to resolve conditions
database access. For frameworks and conditions databases that are tightly coupled,
such as the Gaudi framework and its IOVsrc, this item, in concert with the previous
one, will enable the conditions database to be decoupled for the analysis code.

• In the longer term, given the standard conditions database API, the development of a
Software-as-a-Service for conditions databases, for example using a RESTful interface,
should be encouraged. This would allow the provisioning of conditions databases to
be moved completely out of the physicist’s realm and into that of computing support
which is more suited to maintain that type of software.
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1 Systems Report: Introduction

The FCE Systems Working Group reviewed past and current practices and future plans in
the HEP computational program. The field is facing increasing data rates, data volumes, and
data processing needs in existing and future experiments. The study drew from experience
gained in the field, documented in reports and presentations, and expert testimony. Data-
intensive research activities are a vital component in HEP data analysis, and computing is a
key enabler of these activities. From several challenges and opportunities, two were identified
as being dominant:

• Data Storage and Data Access Technologies

• Efficient Execution on Future Computer Architectures

The scope of the study covers the future path for computing systems available across
the HEP frontiers over the next decade. We address advances in both the experiments and
their data collection as well as changes in computing architecture, networking, and I/O. The
group examined the previous decade, where and how success was achieved, in addition to
areas in which HEP did not take advantage of opportunities available at the time, and which
could have made dramatic differences in how computing is used within HEP. Findings and
recommendations were guided by two major topics:

• Systems/Software related issues

• The effects of changing technologies

2 Computing Across HEP

In this Section we provide a broad overview of the computational activities across the HEP
landscape with a bias towards systems-related issues. We cover the experimental domain in
Section 2.1 and the theoretical arena in Section 2.2.

2.1 HEP Experimental Workflows
Computational workflows in HEP experiments (and some involving theory and modeling)
are complex and the underlying infrastructure – both hardware and software – takes a long
time to plan and to implement, requiring a sizable effort in manpower. We summarize the
situation for the three frontiers below, as well as provide a few abbreviated case studies, DES
and LSST for the Cosmic Frontier, and LHC for the Energy Frontier.

2.1.1 Cosmic Frontier
Computing for optical astronomy can be split into processing images/spectra to produce
measurements, and then analyzing the measurements to reach a scientific conclusion. Typ-
ically, producing measurements is a production activity, usually carried out by a dedicated
group. For two Cosmology Frontier activities, DES and LSST, this particular activity is
primarily funded by NSF. Unlike the Intensity and Energy Frontier experiments, the process
of extracting measurements does not require simulation results.

The analysis of such data, however, is intimately tied to understanding and constraining
systematics through simulations, and thus is considerably more data and compute intensive.
One method of analysis is to compare data from observations to equivalent data derived from
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cosmological simulations and modeling, expressing some candidate set of physical properties.
Following from this, a conservative estimate of the computing requirements set by current
dark energy science is significantly in excess of 500M core-hours.

Two representative examples of major Cosmic Frontier experiments are the Dark Energy
Survey (DES, ongoing) and the Large Synoptic Survey Telescope (LSST, 2022).

The software framework used for DES production is built on a grid processing model,
which allows DESDM to use remote computing sites where appropriate. DES data is trans-
ported nightly, as the data is taken over routed research networks from Chile. The data
is ingested and nightly processing for supernova detection, as well as a first-cut for initial
image quality assessment is dispatched automatically. Assessments of whether the data are
of survey quality are compiled, and inform the next night’s observing program. A differ-
ent production cadence produces data for a release. The release production is organized
into Final Cut, Multi-epoch, Mangle and PhotoZ pipelines. Nightly processing and release
processing are supported by the preliminary calibration and “super” calibration pipelines.

The production framework is such that a high level description of the pipeline is produced.
The description is parsed. Detailed lists of the required files are generated. Depending on the
location of the bulk computing site, computing resources are acquired, input files transferred,
and pipelines are started via Condor. The job progresses, performing computations, and
also uploading detected object catalogs into an Oracle database at NCSA. File-based data
products are returned to NCSA. Depending on the nature of the bulk computing site’s storage
system, any, some, or all of the files associated with the job may be left on the remote sites
as a cache for future computations.

The recent revision of the production framework divides processing into its natural inde-
pendent units, such as exposure, co-add tiles and SNE (supernova) fields. SNE files can now
be dispatched on arrival; exposures and co-additions can now fully occupy bulk computing
resources. The system provides for unique file names; accurate re-configurations; scalable
meta-data collection; detailed file provenance based on the Open Provenance Model; and
detailed operational and performance information. The system now supports operation on
an ensemble of computers, without requiring global file systems (which have proved prob-
lematic for DES applications unless very generously provisioned. This has enabled the use
of Open Science Grid resources on Fermigrid.

The DESDM production hardware infrastructure is centered at NCSA, but includes im-
portant contributions for bulk computing from Fermilab and NERSC.

DESDM software is organized into approximately 220 packages. DESDM software is
deployed in standalone tools and the above mentioned pipelines. Each pipeline and tool has
a configuration which is logically independent of the others and must be specified separately.
A build system assures a consistent configuration of all the dependent packages, builds
and runs the provided unit tests for each package, and makes packages available on the
web. The configuration manager installs the software on test and production platforms.
The installation procedure differs for each bulk computing site: File system installs are
required for iForge and the cosmology cluster; Docker containers are required at NERSC
and a CernVMFS installation for FermiGrid.

The workflows are a series of stand-alone invocations of programs not necessarily well-
adapted for processing at the scale of DES. Successive programs communicate with files.
The DES workflow framework must deal with sequencing the program invocations, with
naming files appropriately, bringing more or fewer files back to support debugging, extract-
ing the relevant metadata and provenance records. The DES workflows interact with an
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Oracle database at NCSA, recording operational metadata, provenance and file metadata as
workflows progress.

All processing, even the local processing, uses the grid model. The community provided
technologies supporting DES-developed production framework software are: Condor, DAG-
MAN, Condor glide-ins, Globus Gatekeeper, and file transfers using http and gridFTP, and
an Oracle database. DES used CernVMFS on Fermigrid and a batch system integrated with
Docker. DES uses the EUPS sytem, which is also used by LSST for configuration man-
agement of its software stacks, and has integrated that system into its provenance model.
Catalogs of detected objects are views based on normalized relational tables. This allows
datasets to be updated incrementally. DES relies on the I/O capability of Oracle, and its
ability to be a parallel query engine.

In the case of LSST, cross-talk corrected data will be transferred from the telescope site
to a computing center in the AURA compound in La Serena, Chile. The data will be saved
to disk, (and asynchronously backed up to tape), and immediately forwarded to NCSA. This
action is supported by redundant bandwidth-protected network paths that are expected to
achieve 40-100 Gpbs.

On arrival at NCSA, the data will be sent (asynchronously, again) to tape, and immedi-
ately to a processing cluster, where alert production occurs. The goal of alert production is
to detect and measure transient objects (things which would be absent or would have moved
if the field was re-observed). An alert record will be assembled for each transient object,
which includes not only a detection announcement, but also a cut out, orbit information, if
relevant, etc. No “science” is done – what is produced are measurements allowing data to be
sorted by type by event brokers. On the cadence of an annual release, data will be processed
into release products. There will be pipelines that process the individual exposures. Data
from the same sky will be processed to increase depth. Data re-assembled into co-added
exposures and support for science is not well served by co-addition, such as the so-called
“multi-fit” type techniques needed, for example, by weak lensing. In the current baseline,
data will be released annually, except for year 1, which has two releases. (There is a proposal
that some of the processing take place at partner institutions, such as IN2P3 in France). The
LSST project will provide 10% of its production capability to run user-provided codes via
a proposal/allocation process. Investigations are underway to determine if it is reasonable
to embed this processing into annual release processing chains, as data movement would be
reduced. Catalog data will be ingested into an LSST developed relational database systems
named QSERV. QSERV is a set of shared mySQL databases, with a capability to batch table
scans. Processed data will be released into Data Access Centers, for distribution to those
holding data rights.

2.1.2 Energy Frontier
Traditional High Energy Physics experiments record particle collisions (events) with their
detectors. Currently, the Energy Frontier is represented by a single major experiment, the
Large Hadron Collider. The LHC has trigger rates of multiple hundreds of Hz and the detec-
tors have of the order of hundred million channels. In addition to the raw data recorded by
the detector, simulations of particle collisions in the detectors are needed to extract physics
results. The experiment’s application frameworks combine hundreds of software components
to simulate events and to reconstruct both simulated and real detector collisions. Over
the last two decades, hundreds of LHC physicists and engineers have developed well over
10 million lines of code, mainly in C++ and Python. The majority of this software is
experiment-specific, but several community projects such as ROOT, Geant4, Gaudi, Fron-
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tier, and XRootD have emerged, and are now well-established key components of the LHC
software stack.

LHC applications store information in the form of objects, which are persisted in files.
Each file can contain different sets of objects of the same event, grouped into data tiers.
Major event contents are RAW (raw) detector information, RECO information containing
the reconstructed detector signals and higher level event contents optimized for analysis.
Files are organized in datasets, grouping events with similar physics and event content.

Several different types of workflows with different levels of complexity are used to provide
input to the physics analyses from recorded and simulated collisions. Three major workflow
types are data reconstruction, user data analysis, and Monte Carlo simulation. Tradition-
ally, executables use a single core and have access to 2 GB of memory, which represents a
conventional limit for the memory footprint of LHC applications. This limit became much
more of a concern after the migration from 32 bit to 64 bit architectures. To fit within
the 2 GB/core memory budget, LHC experiments have invested heavily (> 10 FTEs) in
optimizing the memory usage of their reconstruction software in particular, and still have to
split up their workflows in several pieces with intermediate files written between the different
stages of the workflows. These intermediate outputs are usually transient but can also be
permanently stored to be reused.

Files are stored on mass storage systems with both disk replicas for fast access and tape
replicas for archival storage. Metadata is stored in bookkeeping databases.

The LHC experiments rely on a distributed set of computing centers all over the world,
interconnected with strong networks. The initial MONARC (Models of Networked Analysis
at Regional Centers) model expected the connectivity to be sufficient to exchange larger
datasets between clouds of sites hierarchically. But available network capacity and reliability
exceeded expectations so that a full mesh of interconnectivity (P2P) could be established.
This allowed for a very flexible distribution of datasets for processing and analysis access
as well as opening up the possibility for direct WAN access to files. The ability to access
files through a capacious and reliable network infrastructure allowed the collaborations to
reduce the number of dataset replicas initially needed by the LHC experiments to place in
close proximity to researchers over widely distributed regions worldwide. Reducing dataset
replicas allowed reducing the disk space Tier-1 and Tier-2 centers had to provide, leading
to significant financial savings. Such changes in data replication policies and modifications
to the ATLAS and CMS data models have enabled the collaborations to accommodate
worldwide distributed analysis of vastly increased datasets with only moderately increased
storage resources.

Compute resources are accessible at the sites through batch systems and GRID submission
systems are used to access all resources in a unified manner. Reliability and efficiency
optimization caused the change from a push model to a pull model based on initial pilot
submissions. For LHC run 2, more different resource types are integrated into the same
submission infrastructures such as commercial and private clouds, supercomputing centers,
direct access to batch systems at university clusters, opportunistic resources on major GRID
infrastructures (EGI, OSG, NorduGrid, etc.).

Workflow management systems take care of using these submission systems to split up
work into manageable chunks (e.g., 8-hour jobs) and to execute and monitor the jobs running
on all the distributed sites. Centrally managed production is only different from user-based
analysis by allowing users to write their own non-experiment-sanctioned code and run it in
the jobs. The entire system requires a sustained multi-FTE effort to operate and optimize

Page 50



HEP-FCE Working Group Reports

the infrastructure as well as to include additional features.
2.1.3 Intensity Frontier
The Intensity Frontier represents a diverse set of high precision experiments probing the
limits of the Standard Model. Here, we will focus on two types of experiments: Accelerator
neutrino experiments such as NOνA and those involving large liquid argon detectors and
precision muon experiments such as Mu2e and Muon g-2. Though the data size and complex-
ity of these experiments are not at the scale of CMS or ATLAS, there are unique challenges
that are pushing associated HEP computing to the next level of size and complexity.

The accelerator neutrino experiments collect large amounts of data with generally trigger-
less or very loose trigger data acquisition systems, since one correlates data in the detector
with the accelerator timing of the beam spill. Pattern matching and tracking are the main
challenges of these experiments, especially for those with very large liquid argon TPCs. The
tracking algorithms and analyses to identify candidate tracks of one of the various neutrino
interactions or background processes are very complex and often require large amounts of
memory to execute. For example, the NOνA experiment has a track identification algo-
rithm that compares candidate tracks in the data with 70 million simulated neutrino and
background tracks of various types. In order to execute this algorithm with any speed, a
special computer with 128 GB memory is used to load the templates into memory and run
the algorithm. The template library needs to be about a factor of 10-100 larger to efficiently
identify tracks, but it is currently impossible to run the algorithm with a library of this size.
Algorithms and techniques from industry big data, such as fast query NoSQL databases and
specialized appliances like the Cray Urika systems, are under investigation.

Precision muon experiments face different challenges. There, extreme control of system-
atic uncertainties is absolutely paramount. Many studies requiring large simulation runs are
necessary to understand such systematics from the apparatus and the data analyses. The
main challenge for these experiments is that they tend to be small. The resulting difficulties
are described below.

For both neutrino and muon experiments, the physics models used in the simulations are
in an energy regime that has not been typical for past and other experiments, such as those
at the LHC. Large projects are underway to determine and validate such models (e.g., the
Genie neutrino generator and physics models in Geant4).
2.1.4 Computational Issues for Smaller Experiments
Small experiments (e.g., < 200 collaborators such as Muon g-2 and Minerva) present unique
problems in accomplishing the computing and software necessary for the simulations, data
taking and data analyses. The main problem is a lack of personnel with extensive experience
in computing. Large experiments tend to have a sizable cadre of senior staff, postdocs and
students who form teams to write low-level infrastructure and framework code, reconstruc-
tion code, the simulation pipeline, data management systems, etc. Typically some fraction
of postdocs and students are actively engaged in these computational and software activities.
Such people simply do not exist on the smaller experiments.

On small experiments there may be only one or two computing and software savvy col-
laborators. Writing the many necessary systems from scratch within the experiment is
impossible. Furthermore, these computing savvy people also have the responsibility to train
incoming (less experienced) postdocs and students who will write algorithms and analysis
code. The only solution is to use frameworks and systems from elsewhere. For example,
on Minerva, one of the main computing collaborators brought the software framework from
an experiment he worked on in the past. But this solution still requires work, as such sys-
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tems are generally not written to be completely generic across experiments and still must
be maintained as new versions are released. Furthermore, the original framework progresses
and changes without the adoptee experiment being kept in mind.

The other solution is to engage a larger, typically Lab-based, body of computing expertise
that writes framework and other code as a service and also manages the computing hardware
and infrastructure needed for many experiments. Two good examples of generic frameworks
written by computing professionals and used by many experiments is the art framework
from the Fermilab Scientific Computing Division and the FairROOT framework from GSI.
Fermilab computing personnel also provide data management and services to run jobs on
the Grid. Furthermore, they are forming a Production Operations Team of computing pro-
fessionals who will execute and monitor production simulation and reconstruction workflows
as a service for experiments. Educating new users is also an important task of these large
computing groups.

With these efforts, the experiments can concentrate on their specific code and algorithms.
This solution does raise interesting challenges. There must be strong change-management
processes to handle feature requests to infrastructure code used by many experiments. Even
these Lab-based teams do not have large resources, so prioritizing the needs of several ex-
periments is challenging. Because these systems are used for many different use cases and
regimes, it is important to have tests and excellent communication between the experiment’s
physicists and the computing professionals.
2.2 Computing for HEP Theory
Major use of computing at HEP facilities and national HPC centers is a characteristic of the
HEP theory program. The part of the HEP community that uses supercomputers at scale
(accelerators, cosmology, lattice QCD) also has strong interactions with vendors (e.g., IBM,
Intel, NVIDIA) to optimize code for next-generation systems as well as to influence future
computational architectures.
2.2.1 Cosmic Frontier
Interpreting future observations is impossible without a theory, modeling, and simulation
effort that matches the scale of current and future sky surveys. To match the unprecedented
precision and resolution of the observations, required improvements over the next decade
are measured in orders of magnitude; new multi-physics and multi-scale capabilities must
be developed to address modeling of complex physical processes. The flood of data from
sky surveys has dramatically reduced statistical uncertainties in cosmological measurements
and this trend will accelerate into the future. As a result, large-scale theoretical modeling
and data analysis are required to open new discovery channels and to interpret results from
observations, such as statistical analyses of the galaxy distribution across a large fraction of
the observable sky. The role of computation in what is now termed ‘precision cosmology’ is
thus pervasive, complex, and crucial to the success of the entire enterprise.

Cosmological simulation codes such as HACC (collaboration led by Argonne) and Nyx
(collaboration led by LBNL) run on the largest supercomputers available in the US. Large-
scale simulation campaigns can run up to hundreds of simulations and major individual
simulations can run at the full machine scale on leadership class systems (e.g., Mira at
Argonne, Edison at NERSC, and Titan at Oak Ridge). Petabytes of data can be produced
by a single simulation.

As an example simulation framework, HACC (Hardware/Hybrid Accelerated Cosmology
Code) was developed originally for the heterogeneous architecture of LANL’s Roadrunner,
the first computer to break the petaflop barrier. HACC is designed with great flexibil-
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ity in mind (combining MPI with a variety of local programming models, e.g., OpenCL,
OpenMP) and is easily adaptable to different platforms. HACC is the first, and currently
the only large-scale cosmology code suite worldwide, that can run at scale (and beyond) on
all available supercomputer architectures. It was the first production science code to run at
greater than 10PFlops of sustained performance. Along with HACC’s simulation framework,
a matched analysis system has been co-developed for high-performance parallel in-situ and
post-processing analysis (statistical tools, halo and sub-halo finding, etc.). Some of these al-
gorithms have been embedded into ParaView, an open-source, parallel visualization platform
that has been recently enhanced for visualization and analysis of cosmological simulations.
LBNL and SLAC researchers have developed an extensive set of wide-ranging simulation
analysis capabilities (the yt analysis code was incubated at SLAC and work is ongoing at
LBNL to merge yt and VisIt; yt can also be used as a ParaView plugin); both groups have
focused on tools for the generation of synthetic sky catalogs for a number of cosmological
surveys.

Cosmological simulations use large-scale computing resources at DOE supercomputer
centers as well as offline analysis clusters. Storage is typically at supercomputing sites,
but limited local storage is also available. Making large datasets and analysis capabilities
available to large collaborations remains a challenge.

2.2.2 Lattice QCD
Lattice QCD is an indispensable tool for HEP research, especially for providing critical the-
oretical predictions and interpretations for experimental programs. Important applications
include the QCD thermodynamic, Quark-Gluon-Plasma, and Spin Physics of RHIC at BNL,
the hadronic contribution to the muon’s anomalous magnetic moment (g-2) at FNAL, quark-
flavor physics for B factories (Belle, BaBar, and LHCb), and composite Higgs studies related
to LHC physics by solving strong dynamics.

During the last decade, due to major improvements in theory, algorithm, software and
hardware, lattice QCD calculations have become very accurate and reliable. Many of the
basic quantities are now computed with sub-percent total statistical and systematic errors.
It has been important to have both in-house resources at the National Laboratories, which
support rapid developments of new ideas, algorithms, and tuning of HPC code and param-
eters in a timely manner, as well as access to leadership class computational resources for
production runs. The current HPC resources in U.S. Lattice QCD are supported by the
SciDAC program for software and DOE’s LQCD project for hardware, besides individual
projects at the Laboratories. Support for software development is distributed over the na-
tion, and hardware installed at BNL, FNAL, and J-Lab, is renewed periodically (roughly
every 5 years or so, jointly with the NP program).

The hardware requirement for lattice QCD is both in capability computing (single stream
of large jobs, needing a fast interconnect and good parallel scalability) and in capacity
computing (many streams of intermediate size parallel jobs, typically with large memory
and I/O). The ensemble generation of QCD configurations is a typical capability application,
currently carried out on systems such as the IBM Blue Gene/Q. On the BG/Q the largest job
is run on 8 or 16 racks (8,096 or 16,192 nodes), and achieved 1.6−3.2 PFlops, or 30−40% of
the absolute peak speed with very good scaling. One stream of the computation job typically
lasts for a few months. The capacity machine typically computes physical observables on
the generated QCD ensemble, and this task is performed on PC clusters or GPU clusters,
currently 4K – 8K core jobs for the CPU and up to 32 GPU parallel jobs with an Infiniband
interconnect. One capacity job duration is up to two weeks, and the number of total jobs
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reaches to the tens of thousands.
The file size of the QCD configuration sample is of order 100 GB/file, up to 10K files

per parameter, with O(100) parameter points. Beside the QCD configuration sample, recent
trends in I/O and disk usage for the quark propagator and eigenvectors are such as to
consume up to 100 TB/configuration. Typical temporary storage of O(100) configurations
means that 100 TB to 10 PB is typically used or even moved from one site to another. For
further details, the reader is directed to USQCD white papers [22].
2.2.3 New Physics Searches and Perturbative QCD
In this subsection we follow the presentation given in Ref. [98]. Computational tasks in
searches for new physics are complicated by the large numbers of free parameters in su-
persymmetric extensions of the Standard Model. Tools are available to perform automated
limit setting, but they require access to reasonably large computational resources. Scans
of parameter spaces involve ∼250K-500K models, with simulation of LHC particle events
required for each individual model. For a single model set, typical simulation datasets are of
order ∼1-2 TB in size and require ∼1-2M CPU-hours of computing time. Executables are
single-core for the most part and easily parallelized because of the underlying Monte Carlo
nature of the simulations. Memory limitations present in new computational architecture
do not present a bottleneck at the current time.

High precision SM calculations rely on next-to-leading (NLO) QCD perturbation the-
ory results. Such calculations have played an essential role in explicating the properties of
the Higgs boson. Automated NLO electroweak corrections will soon appear and dedicated
next-to-next-to leading order (NNLO) QCD calculations exist for a number of important
reactions. Precision calculations of this type will become ever more important in the fu-
ture as experimental errors reduce and theory becomes more of a limiting factor. Current
NLO QCD calculations require 50-500K CPU-hours each, with storage needs at the ∼1 TB
scale. Parallelization strategies have included both MPI and OpenMP (including hybrid
approaches) and initial studies for acelerated systems have been carried out.
2.2.4 Accelerator Modeling and Simulations
Accelerator modeling makes extensive use of advanced computational resources. The simu-
lation tasks cover the domains of beam dynamics, electromagnetics, and simulations for ad-
vanced accelerator technologies. A given application is typically a challenging multi-physics
problem, often requiring large-scale parallel resources. Until recently, the computational
model has been a distributed memory, MPI-based approach. Recently, however, applications
are moving to a hybrid MPI/OpenMP approach and GPU and other acceleration techniques
have been investigated. A recent study [99] has concluded that future accelerator modeling
demands will be substantial, extending to scalable code running at the million-core level.

3 Software Development: Incompatibility with the Systems
Roadmap

The majority of HEP software, especially in the experimental arena, has been architected
in a way that does not immediately align with ongoing and future developments in low-level
computing architectures. We discuss this issue with examples taken from the different HEP
frontiers.
3.1 Cosmic Frontier: DES
The DES pipelines are primarily constructed from project-specific codes to remove instru-
mental signatures, and to identify and correct instrumental defects. The high level operations
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that identify objects, register the images on the sky and provide data products using input
data from many exposures are provided by a number of community codes.

In practice, this constrains production computing platforms to those that are available
and broadly accepted by community code developers. The languages currently used and
generally accepted by the optical astronomy community are C, C++, and Python, along
with supporting libraries commonly used in astronomical image processing. Only some
programs are capable of parallelism or minimizing memory use by windowing through an
image.

Many workflows are executed on a single core, because not all steps in a workflow can be
parallelized. This is seen as an optimal strategy for fully using computing, and produces high
throughput, at the expense of longer execution times. This is acceptable for many production
tasks. This serialization strategy, however is not an optimal strategy for observing programs
based on prompt transient detection, which is of interest for other surveys. We also recognize
that packing an independent workflow on one core is a strategy that has a limited lifetime.

Given these constraints, the platforms used by DES are Intel and AMD processors which
use the X86 instruction set. Memory per core can be as high as 8 GB. DES has experimented
with ARM processors that are emerging in the commodity server market. DES cannot foresee
the community code base supporting GPUs in any way that makes assembling the workflows
tractable, and so has not investigated GPU computing. The difficulty in moving to even an
ARM platform is identification and removal of low level software errors in codes that are
currently budgeted to be treat as black-boxes.

3.2 Energy Frontier: LHC Experiments
The LHC experiment frameworks are traditionally executed as single-core applications. All
rely on Intel-compatible hardware. Optimizations for changes in clock speeds were performed
by changing the job splitting or defining different portions of work to be done by a single
application. (LHC reconstruction developers had to face a “memory crisis” during Run 1.)
Besides optimizing the application software memory usage, LHC developers started exploring
new approaches to efficiently exploit the shared memory architectures of multi-core CPUs.
The first solution, multi-process event-parallel frameworks, derived from the observation
that, on Linux, a child process will initially share all memory pages with the process it has
been forked from. Forking 8-event worker processes just before entering the event-processing
loop, a typical 8-core multi-process reconstruction job uses roughly 75% of the memory of 8
single-core jobs.

A more radical solution, to which LHC experiments are migrating or plan to migrate over
the course of LHC Run 2, is to introduce multi-threaded application frameworks that support
sub-event parallel processing. Besides using the shared memory of a current generation
multicore node even more efficiently (an 8-core multi-threaded application uses roughly 60%
of the memory of 8 single-core executables), a multi-threaded framework allows splitting the
reconstruction or simulation of an event into fine-grained tasks that will be better suited to
run in parallel on future many-core architectures. One oft-mentioned issue with task-based
parallelism is that most LHC physicists and developers have not yet acquired the skills to
write code that can run efficiently, or at all, in a multi-threaded environment. This will be
addressed with education and hands-on consulting with experts. Crucially, to support the
gradual migration of thousands of software components, Run 2 LHC frameworks will have to
allow existing components to run “sandboxed” in an environment equivalent to a traditional
single-thread application.

An added benefit of Run 2 memory-efficient concurrent frameworks is that they will give
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application developers more flexibility in deciding whether to optimize an algorithm or a
data structure for memory usage, CPU efficiency, or I/O speed.

3.3 Intensity Frontier
As computing architectures advance into new areas, such as multicore/GPUs/Xeon Phi,
there are systems and users that lag behind the advances. In the Intensity Frontier, very
few, if any, frameworks take advantage of these new technologies. In many cases, the gains
realized by these technologies are not enough to justify the work necessary to use them.
For example, the Fermilab art framework can now do event-level multiprocessing, but very
few experiments are using that feature. Larger gains in speed could be realized by fine
grained parallelism and utilization of co-processors/accelerators, but again, converting those
algorithms is a large task, and especially burdensome for small experiments. Tracking for
very large liquid argon detectors may require some of these advanced technologies, and
so LBNF/DUNE with its large team of software-knowledgeable collaborators interested in
computing may have the resources to make progress.

3.4 Counter-Examples
In the case of theory and simulations, the employed codes are often tuned to the latest gener-
ation of computational architectures. Lattice QCD uses multiple CPU, and multiple/many
cores with MPI and threading (both in native pthreading or by OpenMP) effectively to
the extent possible, as well as GPU technology. Depending on the size of the problem
and other parameters, typically 10-40% of the theoretical peak speed is achieved in these
codes, partly thanks to the intensive efforts made possible by DOE SciDAC and other na-
tional/international collaborations in the community. The current and near-future limiting
factor, however, is the small bandwidth of the inter-node communication, which would have
to be improved roughly by an order of magnitude to reduce the imbalance between node-level
flops and the communication bandwidth. Unfortunately, the high cost of such an improve-
ment makes it unlikely to be implemented on large-scale systems.

Similarly in the Cosmic Frontier, many years of effort have been spent on maximizing
the return from today’s HPC resources to the fullest extent possible. The Nyx code scales
to 100,000 cores on the Leadership Class and NERSC computing facilities using both MPI
and OpenMP, while HACC has demonstrated similar scaling at the million core level. In
addition, HACC has been successfully optimized to work in heterogeneous environments as
well, and runs in full production mode on CPU/GPU systems at very high levels of sustained
performance.

4 Effects of Changing Technologies

In this section we review technologies that represent major building blocks of the com-
puting infrastructure used by HEP research programs. For each of these technologies we
provide a set of findings and some recommendations.

4.1 Processors
A comprehensive treatment of the current evolution of computing architecture can be found
in the review by Kogge and Resnick [10]. For roughly a decade, the failure of Dennard scaling
has driven chip design in new directions that emphasize exploiting concurrency for gains in
performance, while at the same time introducing significant imbalances in floating-point per-
formance and off-chip communication bandwidth. Additionally, the amount of DRAM/core
is also reducing and the memory hierarchy is becoming more complex (in-package memory,
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off-chip DRAM, off-chip NVRAM). Historically, local data motion (data movement from
memory to CPU) has always been a key barrier in attaining optimal performance, and this
difficulty is now even more problematic. Finally, the presence of multiple disparate architec-
ture options (e.g., GPU, Xeon Phi) raise new problems in the areas of programming models,
tuning algorithms to architectures, and portability.

GPU, many-core, and hybrid systems are likely to remain the workhorse “beyond X86”
options for the next decade, although low-power architectures and FPGA-based systems
could also be interesting alternatives. Other, radically different technologies are likely too
immature and narrow (e.g., neuromorphic computing) to provide significant competition
for general “at scale” applications on a short timescale, but deserve attention. Even more
forward-looking technologies such as quantum computing have yet to overcome a number of
significant hurdles before they can transition from pure research to production systems.
4.2 Software Challenges: Programmability versus Efficiency
The main challenge one faces in an environment of heterogeneity and many-cores is that the
scientist’s ability to write a simple code in C, C++, or Fortran will not take full advantage
of the computational power of a single node. The use of MPI, while advantageous for intern-
ode communication and computation will, in general, hurt on-node performance. Instead,
programming models involving OpenMP, OpenCL, CUDA, OpenACC (among others) will
have to be utilized to get the most out of the new systems. In addition, the programmer
will have to be aware of memory hierarchies, access speeds from the different cores to this
memory and more challenging NUMA effects that can become bottlenecks to performance
optimization.

Activities in which young researchers can get practical experience programming on these
next-generation heterogeneous machines, which have appeared already at the LCF’s at Ar-
gonne and Oak Ridge and will come to NERSC in 2016, are critical as not only will these
machines be the backbone of the HPC world, but due to their overall cost and energy effi-
ciency, they will in fact begin to dominate the resources available at universities and small
clusters at Laboratories. An increased relationship with vendors will also be potentially
beneficial as it will allow the pathway forward on the next-generation chips to be created
in an environment of co-design in which the needs of the scientists have the potential of
influencing certain design choices.

Many activities required to move HEP computing in new directions need investments in
new ideas, novel algorithms, and optimization of software and parameter tuning in a timely
fashion before performing large-scale production in the most efficient way. For this reason,
local in-house resources at Laboratories and universities play an important role, aside from
access to larger-scale computational facilities, e.g., national Leadership-class computational
resources. Such a two-level resource model also provides a useful setting to train young
scientists.
4.3 Storage Hardware
Although magnetic disk recording was predicted to reach its limits some years ago, develop-
ments in media and head technologies as well as the increasing use of perpendicular recording
have continued to push the boundaries. It is fair to predict that magnetic disk technologies
will continue to result in increasing capacity and decreasing cost per bit stored. The high
rotational speed of magnetic disks, developed to shorten data read time, would have short-
ened the life of drives because of bearing failure, but the use of fluid suspension and gas
hydrodynamic bearings has vastly extended the life of the disk spindle bearings.

“Cloud” storage, though currently a hot topic, nonetheless relies on conventional magnetic
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disk systems. To improve performance, some large-scale servers use SRAM “disks” for buffer
storage. Cloud storage makes the details of the storage system transparent to the user,
though details of reliability and ownership of the data are things the end user should not
assume to be transparent. The costs of transporting data to and from commercial clouds
remain a concern.

Storage systems using RAID arrays are now standard, as are the implementation of them
in NAS and SAN storage systems. New are simpler “just a bunch of disks” (JBOD) and
“massive array of idle disks” (MAID) systems. These are designed to be low cost and easy
to implement (JBOD) or to save power (MAID). The MAID systems have some interesting
cost statistics when the expenses for powering large disk storage facilities and the needed air
conditioning are included. As the size of the “server farms” that HEP demands increases,
power saving ideas are likely to become more prominent.

Magnetic tape, whose demise was predicted decades ago, has also proven to be resilient.
Research has steadily increased the capacity of magnetic tape systems and has kept the
medium as the lowest cost per bit stored of current media. It also shows a future growth
path and the LTO family of tape systems continues to be used for archival storage, in
particular. However, explicit archival disk storage based on shingle recording methods, and
with low power consumption, is being announced in the market place. These systems may
have a role for some applications where tape is currently used.

Starting in 2015, DOE HPC systems are being procured with Burst Buffers for additional
storage and data processing capabilities. A Burst Buffer is a combination of hardware and
software meant to leverage emerging NVRAM storage technologies in order to improve ap-
plication I/O effectiveness by simultaneously: reducing the time an application spends doing
I/O vs. computation; improving the efficiency with which I/O is performed to underlying
disk storage; and reducing reads to the underlying disk filesystem by acting as a shared cache
for multiple processing elements. While this technology is in its infancy, as it is more than
an order of magnitude faster than spinning disk, it has the potential to revolutionize the
way HPC computing is done. The underlying goal of the Burst Buffer is to provide a fast
storage system so as to improve overall application productivity and resilience compared to
a traditional filesystem. Although it is predominately for checkpoint/restart, it is desirable
for the Burst Buffer subsystem to be a general-purpose solution for other application needs,
such as post-processing, in-transit visualization, and data analytics.

4.4 Virtualization
One of the first implementations of massively distributed computing for scientific research
was the Grid. Grid computing essentially combines computers from multiple administra-
tive domains to solve single, but independently parallelizable tasks. Compute provisioning
and management in grid computing is an extension and abstraction of the traditional con-
cept of batch computing, whereby individual computing nodes are managed by a master
system allocating tasks to the nodes (i.e. workload management systems like PanDA and
glideinWMS). The distribution and allocation of computing and data tasks across computing
sites is done using specialized middleware services responsible for different functions, such
as authentication and authorization, workload management, data transfers, logging, etc.

For workflows and provisioning computational resources, the term virtualization is applied
to techniques used to separate the work of provisioning physical systems and operating
system instances from the view provided to applications. The two main technologies are
virtual machines and container technology, such as Docker. A related capability is the
provisioning of ensembles of these machines along with their associated storage.
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As the use of virtualization has become a more and more viable and efficient solution for
instantiating computing nodes, the concept of ‘the Cloud’ or cloud computing has gradually
established itself as a more efficient and cost-effective solution for certain scientific computing
tasks. Although grid and cloud computing have many similarities, cloud computing differs in
a number of important aspects for both providers and users. Compute provisioning and man-
agement in cloud computing can make better use of virtualization and automation thanks
to an increasing number of standard tools and services, which are supported both commer-
cially and at a community level. This, in turn, allows computing sites to provide increasing
amounts of resources, faster and more reliably. Cloud computing shifts the focus from pure
resource provisioning to service provisioning, allowing the combination of different elements
into higher level platforms or applications, often tailored to specific user requirements.

This is an area being actively developed by industry, and as a result there are a number
of techniques, with more emerging. There are many complex drivers for the development of
these techniques. These include the need to achieve economies by sharing physical hardware,
the need to scale an application with varying demand, and the need to separate the software
delivery process from physical systems provisioning. Two ways of deploying containers and
virtual machine capabilities are emerging for science use-cases.

One is to add these capabilities to traditional techniques in an essentially conservative
fashion. This involves integrating one or the other basic virtualization techniques into exist-
ing clusters or HPC systems. An example of this work can be seen at NERSC, where batch
jobs can run code in Docker containers. The existing batch system serves as a resource
manager, and cluster resources, such as task allocation platform (TAP) systems, and global
file systems are imported into the containers. Expertise is thereby preserved.

The other way is essentially disruptive, with the physical resources and containers being
managed in new frameworks, of which the most notable example available to the HEP
community is OpenStack whose genesis is cloud computing and is supported by industry-scale
open source projects. OpenStack provides very substantial capabilities, with a corresponding
complexity.

4.5 Networking
A key factor in better supporting HEP workflows lies in the advancement of intelligent
network services. These services are mostly an advancement of existing basic offerings or the
development of advanced capabilities that leverage disruptive technologies and/or significant
paradigm changes.

An emerging paradigm for next generation network architectures revolves around the
notion of the network as a “multi-layer, multi-technology” construct over which multiple
services can be provided. These services include traditional IP routed services as well as
native access services for lower layers based upon Ethernet, SONET/SDH, and wavelength-
division multiplexing (WDM), and OpenFlow technologies. Making these services available
via a well-defined interface is critical in order to enable the next generation of networked
application innovations. An expected shift to a more interactive relationship between scien-
tific applications and the network has driven the creation of a new concept – the “Network
Service Plane” (NSP). The NSP can be broadly defined as a set of abstracted network capa-
bilities presented as provisionable service objects that can interoperate and be incorporated
into an application resource provisioning workflow. The existence of this network service
plane enables the workflow management system to dynamically create and manage a com-
munication infrastructure to enable data analysis, rather than be bound to constraints of
deployed physical network connectivity or long negotiations of new services from network
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service providers.
Described below are three major characteristics that are fundamental to the next gener-

ation of network services. The combination of these characteristics is the enabler for a new
class of “Intelligent Network Services”.

Network Services Interface: A well-defined Network Service Interface (NSI) which pro-
vides a distinct demarcation point between the network and application/middleware must
be developed. This NSI should include a set of atomic network services which are modular in
nature and allow for more complex services to be composed as needed. This service interface
will need to include a new paradigm for how clients interact with the network.

Network Service Capabilities Expansion: Future network services must expand in scope
beyond current point-to-point Ethernet private line services. Features which are needed
include multi-point topologies, protection/restoration services, measurement services, mon-
itoring services, and security services. In addition, these services will need to be provided
across network infrastructures which are heterogeneous in the technology and vendor dimen-
sions.

Scientific Workflow Support Features: This is a set of capabilities which allow for the
network to add value and contribute to the workflow, co-scheduling, and planning activities
of application and middleware systems. The objective is to transform the network from
a passive participant (with little to no state awareness) to an active participant in appli-
cation/middleware workflow operations which are responsive in ways that are meaningful
to application/middleware processes. This requires the network (or agent on the networks’
behalf) to greatly increase its state awareness and intelligent processing capabilities.

4.6 Non von Neumann Architectures
In addition to the changes we will see in mainline compute architectures over the next decade,
with many-core/multicore/GPU/etc., new technologies such as neuromorphic computing will
become available and can deliver huge benefits for certain types of data analysis. Inspired
by the human brain, neuromorphic chips are highly suited for machine learning and pattern
recognition. The neuromorphic architecture consists of a scalable network of neurosynaptic
cores that can be programmed and trained. Algorithmically it can be described as a neural
network transforming a stream of input spikes into a stream of output spikes. Late last
year, IBM unveiled their SyNAPSE/TrueNorth architecture and demonstrated that it can
recognize and classify objects with extremely low power consumption [100].

The current production chip, the largest ever designed by IBM, has 4096 cores providing
1M neurons and 256M synapses and its designed to be tiled in a 2D network. Due to its
unique clock-less architecture, the chip has a typical power density of 20mW/cm2, over 1000
times less than a traditional CPU. A single-rack system integrating 4096 chips, the largest
currently considered, would have 4B neurons, 1T synapses (∼ 1% human brain) and consume
∼4 KW. Given the expected data rates and signal time scales, a very promising application
for such a chip could be real-time data processing for the proposed LAr TPC at E-LBNF
and other Intensity Frontier experiments.

Current TPC track finding algorithms do not fully exploit the imaging capabilities of a
LAr TPC, discarding detailed signal shapes after 2D/3D-hit formation, with a potential loss
of tracking efficiency coming from ambiguities and tracks traveling along wire planes [101].
A seedless, fully parallel, 4D track-finding algorithm for LAR TPCs appears to be an ideal
demonstrator of this new architecture’s pattern recognition capabilities. At this stage there
is no plan to produce a co-processor version of these chips, but there are early ideas on how
this could become part of an HPC solution. Solutions like these would also be of interest for
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next generation real-time pattern recognition triggers aimed at HL-LHC and beyond.

5 The HEP Distributed Computing Environment

The geographically distributed infrastructure of HEP computing raises important chal-
lenges, from managing worldwide distributed datasests all the way down to provisioning and
optimizing local computational, network, and storage resources for a variety of HEP-specific
applications.

5.1 Resources and Resource Provisioning
As the computing environment becomes richer in the resources that are expected to become
available (e.g., combination of commercial and institutional cloud services, traditional clus-
ters, and a variety of HPC systems), it is expected that, compared to the present situation,
computing in HEP will become significantly more complex. Managing large-scale compu-
tational tasks will have to be carried out in an environment where the diversity and the
dynamic nature of the computational resources will be essential control variables. Statically
federated resources will need to be integrated with dynamically allocated resources causing
new challenges for resource planning, acquisition, and provisioning. A flexible policy-based
mechanism will be needed in order to comply with the ever more complex user needs.

The enabling mechanism for satisfying the above requirements is to be able to switch in the
application and its software environment seamlessly at execution time on any given resource,
where the individual resources must be capable of handling I/O dominated computational
traffic. Additionally, sufficiently fast, low-latency, remote data transfer capabilities will be
necessary. The overhead in registering resources and adopting applications will need to be
minimized; a nominal requirement would be less than 10% of the actual resource usage time.

5.2 HEP Applications and Networking
The distributed nature of HEP datasets and computational resources places significant de-
mands on the available networking resources.

Because of the way applications make use of networks, certain key opportunities exist for
an application to change behavior based on information observed about network character-
istics and network performance. These include the reliability and performance of individual
network connections (e.g., TCP connections between data management systems), the relia-
bility and performance of named entities (e.g., the data management system at a particular
research institution considered as a whole), and the overall behavior of the entire system.

Since network performance is viewed primarily from the perspective of the end systems,
the information to be used in making performance decisions is usually best collected by
the end systems. There is an exception to this, which is data from network measurement
systems such as perfSONAR, which collect performance data that can be used to characterize
portions of the network path. Therefore, applications which make heavy use of the network
would benefit both from tracking their own metrics and from importing information from
external network measurement systems.

In order for next-generation advanced networked applications to be successful, a set of
network capabilities and services is needed, that is significantly beyond what is available
today. This new class of network must satisfy additional application-specific requirements
to feed the co-scheduling algorithms that will search for real-time and scheduled resources,
and will span the network and application spaces associated with large volume, worldwide
distributed data analyses. Network infrastructures, capabilities, and service models will need
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to evolve so that the network can be a key component of the next technology innovation
cycle.

The core requirements are as follows. Dynamic network service topologies (overlays) with
replication capabilities to support reliable multicast are necessary to efficiently move the data
from the source to multiple depots. (The conventional approach would be to iteratively copy
the data from the source to each depot individually.) Resource management and optimization
algorithms (e.g. available network resources, load on target depot) are needed to effectively
determine the “best” depot to retrieve data from.

In order to meet these requirements a number of strategies will neeed to be implemented.
These include – use of multi-constraint path finding algorithms to optimize solutions (e.g.
multicast for uploads, anycast for downloads); scheduling and coordination of data replica-
tion in phases to optimize the upload procedure (e.g., multicast source to 10 Gbps connected
depots first, then use some of the depots as sources to multicast data to 1 Gbps connected
depots); downloading portions of the files from various depots in parallel; network caching
(store and forward) to optimize transfers.

Aside from these more general requirements, there are some specific situations that need
to be discussed separately in the HEP context. The first of these is the simultaneous use
of multiple, very large, distributed data sets via remote I/O. In some HEP workflows, small
portions of very large distributed data sets are needed for analysis. Accessing data subsets
remotely is becoming practical as remote file systems mature and as entire data sets become
too large to move. The requirements for doing this successfully include dynamic network
service topologies (overlays with multiple different paths) with real-time networking for pre-
dictable network behavior since all of the data sets will be accessed from a single running
process; co-scheduling of resources to access data sets at different locations; data protection
and/or recovery to prevent user processes from hanging if remote data is inaccessible due to
a network path going down; very low packet loss and reordering may be necessary to prevent
performance collapse. In general, satisfying these conditions will require close coupling or
interaction between co-scheduled resources (e.g., network, storage, compute) to build toler-
ance to service degradation and macro-scheduling and coordination of remote file systems to
optimize read/write access across simultaneous distinct workflows.

Another important topic from the HEP perspective is the issue of time-sensitive data
transfers as part of execution workflows. Some analysis-related workflows require geograph-
ically distributed resources such as compute nodes, storage assets, and visualization appli-
ances to function as a single entity. The seamless execution of the workflow requires close
coordination and co-scheduling of the various components, including the network that “glues”
the components together, to ensure that the entire workflow pipeline is up and functioning
for tasks to run and complete in a timely manner. In order for such distributed workflows
to be practical, strict co-scheduling of the necessary resources is necessary to ensure that
every component of the workflow pipeline is available and connected. Management tools are
needed that facilitate easy composition of complex workflows and coordination of resources
and resource brokering facilities are required to expedite workflow composition.

5.3 Global Data Access
This finding addresses issues observed with data access in HEP collaborations that operate
on a global scale. Thousands of scientists at hundreds of institutions around the world are
involved in data analysis. Therefore, the problem arises of making the data, needed by
thousands of concurrent analysis processes, efficiently available, independent of where the
processes are running.
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One can take a conservative approach by programmatically replicating datasets to places
that are in close proximity of the analysis community, but this comes at the expense of
having to provide the storage resources for the same datasets multiple times, which, as the
LHC community has learned during Run 1, is not affordable. Or one can take the approach
of limiting the number of replicas to one or two and use storage federations to discover the
data inventory in real time for direct access out of the analysis process. While the latter
approach is, resource-wise, a big advantage over multiple replicas, it requires predictable
high performance wide area networks to exist not only within regions but also between
them. Another approach is to let the network “learn” what the data inventory is that the
analysis processes need in anticipation that there is overlap regarding what analyzers are
interested in in a particular region. Dynamic, self-learning caches at major network exchange
points could help significantly to improve the data access efficiency associated with processes
accessing data over the wide area network directly. Several technical approaches have been
implemented to address issues of this sort where the focus is on the needed data and not
where it is physically located. One example is the delivery of Web content, in particular by
the video streaming industry (e.g., Content Delivery Networks), while others, e.g. Named
Data Networks (NDN), are very promising but still in the R&D stage of development.

5.4 Systems Data Analytics
During the past several decades computing facilities contributing to HEP computing as well
as HEP scientific instruments have been gathering not only enormous amounts of scientific
data, but also very large quantities of systems-monitoring data. These data sets are well
known to be a valuable resource for designing and optimizing future systems, since they
provide access to actual resource utilization patterns. Better curation, enrichment and man-
agement of this data would improve its exploitation. Processing this data in near-real-time
may be useful in some cases.

The investigation of state-of-the-art data analytics in this sector would be enhanced if
the various groups concerned were to interact more strongly. In particular, a common data
analytics platform might be desirable (the ATLAS collaboration is working with CERN IT
on this). This area is somewhat recent in terms of R&D activities within HEP; a new
ASCR/HEP SciDAC project has been initiated to exploit systems data currently archived
at Fermilab in order to optimize data management and analysis.

5.5 Federated Identity Management
HEP researchers interact with people and resources domestically or internationally, and they
are thus often required to identify themselves through some form of login. Unification of
user authentication is very important in enabling resource access in a distributed complex
computational environment. In particular, satisfying security concerns of resource providers
is an essential requirement.

DOE Laboratories and universities have made some effort to have their organization join
InCommon (trust fabric for higher education and research, operated by Internet2) but the
process has not been completed to the extent that the mechanism can be used smoothly and
throughout the community. It is very important that federated identity management services
are provided by organizations associated with the HEP community. In addition, appropriate
protocols need to be worked out for automated HEP workflows to run on ASCR-controlled
HPC resources.
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